[image: image1.wmf]User

ID card

Login

Password

Profile

e-mail

Address

add()

modify()

erase()

Seller

Bank account

infoSellingPrice()

infoAccept()

Buyer

Credit card

infoProduct()

infoPrice()

Startup value

Deadline

Bid

Time

Auction

Product description

Hit number

Current value

Startup value

Information

(no. occupants etc)

bid()

AuctionHouse

Name

IP address

Initialization()

StartAuction()

EndAuction()

SellerInform()

Product

Type

Description

announce()

purchase()

1-1 Set-up

Has

 COMPUTER TECHNOLOGY INSTITUTE
1999

__

[image: image2.wmf]
Abstract

This paper addresses the issue of development of electronic commerce services over the WWW. It presents an electronic auction system as a case study of a distributed computing application using state-of-the-art technologies in WWW distributed programming. The resulting system has light requirements in computing resources and is easily adaptable to sophisticated functionality.

1. Introduction

1.1 E-commerce

Electronic commerce is one of the hottest issues of WWW development. It addresses the adoption of new technologies in the service of the everyday life of consumers. Among the key issues of electronic commerce technology challenges are the standardisation of procedures and processes and the development of novel services for widespread usage by the public. The revolving central issue of commerce is the concept of a transaction and this work makes an attempt exactly at modelling auctions as transactions.

1.2 What is an auction?

An auction is a special type of a commercial transaction. The basic difference between an auction and a classical transaction is that in the latter the customer offers a price for a product, which is accepted or rejected or (bargained(by the seller until both agree or until the deal is broken. In an auction a product becomes an object of competition among many customers. Consequently the auction is a more (democratic(commercial transaction, as more than one person have the opportunity to participate in the auctioning of a product on sale.

In Internet there exist some systems of electronic auctions, but these are not real time systems. Typically auctions last several days and it is at their conclusion that a bidder is informed whether he/she was successful or not.

1.3 Existing auction systems

A typical electronic auction system is Bonsai
. In Bonsai new members are registered by filling in a special form. When a user becomes a member in the system he/she can observe an auction, participate in an auction or sell one or more products. To sell a product he/she completes a form, giving information about the product and the desirable (minimum) price. Bids are collected for a pre-specified time period, and bidders are informed about the biggest offer and the final winner. Usually an auction takes quite some time to complete. Similar systems are Jerome J. Manning & Co.:Real Estate Auctions
, and Copart Salvage Auto Auctions
.

These systems are not real time however. So, persons or companies who would like to participate in auctions over the WWW, but have limited time resources to do so, can not use them (in reality, some pseudo-autonomous bidding is allowed but this does not compensate for the absence of real time action). A similar problem appears with sellers, who may want their product to be sold as fast as possible (for example an airline may want to auction the remaining seats of a flight a few hours prior to departure). The lack of the above feature is a major problem of these systems and could be a factor of unreliability due to the possibility of generating suspicion that bids are maybe manipulated. The need for a real time electronic auction system is existent.

Another electronic auction system is CASS [1]. Even though, CASS is not implemented over the WWW, it is designed as a multi-location real-time electronic marketplace (currently used only in wholesale fish auctions, it provides for the connection of remote sites, such as fish auctions, buyers and sellers, using a PC via a modem or ISDN line).

1.4 Motivation for real-time auctions over the WWW

Network bandwidth (or the lack of it) has always been a limiting factor in the deployment of real time applications over the WWW. However, as the information society will be increasingly dependent on the ability of its citizen to communicative efficiently on-line, the development of products and services that attempt to emulate real life situations is a necessity. Thus, a real-time auction system would exactly address the transition to an electronic consumer habit as close as possible to the conventional one.

1.5 Layout of the rest of the report

The rest of the report is organised as follows:

Brief system overview: This chapter is an overview of the already implemented system. It describes some basic issues about the key technological components of the system (Java, Voyager, Applets and the WWW).

Requirements Specifications: This chapter lists the users’ requirements of an on-line electronic auction system. It also introduces a scenario of usage.

Design: This chapter describes the conceptual and logical design of the system, using standard notation (OMT), and sets out the interaction between the system objects.

2. Brief system overview

2.1 Basic features

The auction system to be presented has three types of entities: buyers, sellers and auction houses. It implements a classic scenario: a seller informs an auction house about products to be sold and the auction house forwards them to a group of buyers inviting them to start making bids.

The system has the following features:

· a communication protocol between basic processes (an auction house is informed by sellers for the products they want to sell, buyers make offers for products which are auctioned in the auction house, the auction house determines the winner of every auction and informs corresponding sellers about that).

· a facility for recording information about auctions which have been completed, in a suitable database. All transactions, which take place in an auction, are recorded in a database, so a buyer has the opportunity to see some information on history of bids, for example. This helps a user to take right decisions about his/her next actions, because he/she can make assumptions about the buying behaviour of other users in the auction.

· a process for the authentication of users.

· a graphical user interface for any type of interaction with the system. There are graphical user interfaces for operations, such as the registration of a user as a buyer or a seller in an auction house, the users’ authentication with a login/password mechanism, the declaration of information for products which will be auctioned, the participation in an auction and the simple observation of an auction.

The system has a dynamics of expansion. Because of its use of the Voyager technology
 for the development of the system, it can easily be expanded to incorporate features of artificial intelligence and total independence of the machine in which it runs. This can happen with the use of agents, which are special types of objects, which are implemented and made available by Voyager. Agents can move autonomously by embedding onto them routes between auction houses.

Using the Voyager feature of object mobility, an auction house can manage system overload situations by transferring an auction to another computer, in a manner totally transparent to its users. Also the auction house workload, which corresponds to the messages exchanged between an auction house and its customers can be reduced with the use of the feature of Space, which is provided by Voyager technology. Space is an advanced architectural feature for the reduction of messages between Voyager objects. Using the idea of Space an auction house can divide its users in domains and domain forwarders transparently inform users without the intervention of the parent process.

2.2 Java & Voyager

Java [2] is a powerful programming language built to be secure, cross-platform and international. It is being continuously extended to provide language features and libraries that elegantly handle problems that are difficult in traditional programming languages, such as multithreading, database access, network programming and distributed computing. Java allows client-side programming via the applet.

For the development of the auction system we used ObjectSpace Voyager Core technology, which is a product of ObjectSpace
. Voyager, a simple but dynamic object request broker (ORB)
, is developed on this technology. Voyager is used for the development of distributed applications. It is 100% Java and it follows the object-oriented model of Java. With Voyager a programmer can create remote objects easily, send them messages and move them between programs, which are located in different computers.

Except from the fact that Voyager has a set of features, which are shared by other ORBs too, it also provides mobile objects and autonomous agents. Voyager is a platform that unifies distributed programming with agent technology. Its basic philosophy is that an agent is simply a special type of object, which can move independently, continue to do operations, as it moves and acts like any other object. Voyager permits objects and agents to send Java messages to an agent even if it moves. Also it permits remote activation of any Java class, even if it belongs in a third party library, without modification of the class source. It also supports services such as transparent distributed persistence, scalable group communication and basic operations of catalogue administration.

Voyager, unlike other distributed technologies, uses the Java language as an essential interface. One of the main feature of Java is the ability of class loading in a virtual machine in run-time. This ability permits the usage of distributed objects and autonomous agents as another tool for the development of distributed systems. The addition of this ability in older distributed technologies is often impractical and leads to awkward usage of mobile objects and autonomous agents, making them clearly inferior to the transparent support of these features in Voyager.

2.3 Applets

The implemented system uses applets to interact with users, either the customers or the administrator. An applet is a program that runs inside a Web browser. Because applets must be safe, they are limited in what they are allowed to do. However, they are a powerful tool in supporting client-side programming.

3. Requirements Specifications

3.1 User requirements

The user requirements, for an electronic auction system, will be produced by a study of the needs, desires and experiences of users from corresponding systems, regardless of whether they are electronic or not. A set of basic user requirements is set out below.

· Friendly user interface. The system must provide a user-friendly interface to accommodate even inexperienced users without intimidating or disappointing them.

· Fast access to the auctions’ system. Users must access the auctions’ system as fast as possible, so as not to waste time waiting for a connection with the system. Delays may result in a user not participating in an auction and, surely, are a source of annoyance.

· Small user involvement in system installation and operation. The user’s involvement in setting up and maintaining the system should be minimal.

· Small cost for purchase and usage of the system. The system must be cheap to tempt users and auction houses to use it. Although the license price can be fixed ad hoc, the requirements of the system in hardware mustn’t be big or cause network overload. Both could either increase costs or delay access, resulting in potential market failure.

· Provision of equal opportunities for participation to users. Every subscriber of the system must have the same opportunities of participation in auctions with other users. No privileges (such as early information) are to be given to any users.

· Products interest profile. The users may complete a profile of interest for products in an auction house. The auction house may then inform them for auctions, for which they could be interested in. This gives the opportunity to an auction house to inform its users on time as well as build up a reliable database of profiles, that may be used for marketing.

· Observation and participation in more than one auction. A user must have the opportunity to participate in all currently ongoing auctions, switching between them at will.

· Autonomous bids. The potential of autonomous bidding should be explored. Autonomy may be either specified by an ad-hoc schedule or learned via profiling.

· Adequate statistics information. Users should be able to keep track of an auction’s history before deciding to submit a bid.

· Notification to users about potential auction conclusion in which they are about to win. Users should be alerted for auctions which are about to finish and in which they will be the winners, if somebody doesn’t bid for more.

· New products update. It concerns informing users about the submission of any new item to be auctioned at the auction house.

· Security. The system must be safe in data exchange, to avoid data perusal by malicious users or plain hackers. Also it must secure that no bid information will be lost. It is also essential that the system supports the privacy of personal information (such as credit card, and/or address details).

· Authentication. It concerns the identification of users, in the sense that every user who participates in any auction is known to the system.

3.2 Scenario of Usage

In this section we will describe the actions available to a user. Registration, which is essential for selling and buying products, is such an action. Product declaration is another action where a seller submits an item to be auctioned. Participation in an auction is another one. Finally, simple observation of the evolution of an auction is a commonplace action, which allows the user to simply observe an auction without the right to make an offer.

3.2.1 Registration

Reliability in the process and the result of an auction (credibility as well) is boosted by establishing the identity of each system user.

The authentication level, that we want to attain, is a trade off between security, technical complexity and user friendliness. A simple registration form contains only a login and a password field. However, other fields such as credit card number, address, etc., can be requested. This would entail an overhead on the auctions house’s personnel to authenticate the data from external sources but would increase the trustworthiness of the system.

To allow maximum separation between classes of users, buyers and sellers will be registered separately.

3.2.2 Product declaration

The seller, after registering with the auction house, may submit, at any time, information about a product that he/she would like to go up for sale, specifying the expected (minimum) price, a product description and a date by which the auction must have been completed. The auction house then informs the potential seller if the product is accepted.

The auction house updates a scheduling table of auction, according to such seller requests (this scheduling table may only be accessed and/or modified by the system administration). Potential buyers are informed about the dates of an auction kick off, which allows them ample time to decide on their participation. More than one item may be auctioned at the same time and a buyer may participate in any of these auctions.

3.2.3 Participating in an auction

A buyer participates in an auction by simply accessing the WWW site of the auction house and being granted an authentication clearing by a login/password mechanism. Two types of bids are possible.

· Manual bid: The user can make an offer for the auction he/she selects. During the auction he/she receives information about the auction, such as the number of users who participate in it and the current value of the product on sale.

· Autonomous bid
: In autonomous bidding an agent (autonomous object) will be created at the user’s desktop and will travel all the way to the auction house to start bidding according to a set of user-specified rules, without (usually) any supervision.

3.2.4 Observation of an auction

Users, who are not registered at an auction house, should have the opportunity to observe the progress of an auction for plain marketing reasons. The marketing message will be better received when the potential user is assured of the smooth and reliable system operation.

Potential sellers may also be interested to observe the carrying out of an auction.

3.2.5 Expanding the scenarios

The operation of the system was described from the point of view of one auction house only. The descriptions set out above hold when the world consists of one auction house or when auction houses are not co-operating.

The system can be expanded in the situation that some auction houses decide to co-operate. Then, a large space of auction houses will be created, where a user with or without the help of agents could take advantage of several services made available by such an architecture of collaboration.

Among such services could be:

· A user can specify his/her requirements for a product (product description, price) and an agent is spawned to locate an auction house, where such an item is being auctioned and bid on behalf of the user.

· A seller could achieve less charging from an auction house for auctioning his/her product, as he/she could select among a variety of auction houses.

· Auction houses also stand to reap benefits from such a co-operation. A larger audience (of potential users) will be addressed. This happens because a user of an auction house could be automatically a user of another auction house too.

· An auction house could delegate some of its functionality to a competitor/collaborator should it not be available for a variety of reasons (e.g. system maintenance). This would work much like the airline industry where competitor company jets are hired to tackle extraordinary situations (strikes, increased demand etc.)

The system to be presented in this paper would need quite some technical enhancements regarding functionality to achieve such a co-operation platform, but due to the technologies it adopts this would entail minor changes in the conceptual design.

4. Design

4.1 Conceptual Design

Figure 1 details the system design in OMT
 notation.

[image: image3.wmf]
Figure 1: Conceptual design.
The main object of the system is the AuctionHouse. All the other objects hook on it at some point in their lifetime. Its job is mainly to create and to synchronise the other objects. The attributes of this object are its name and its IP address. The object can initialise and terminate an auction and inform a seller about the acceptance of a product
.

The users of the system can be separated in two categories: the sellers and the buyers. Sellers (Seller object) are the users who submit to the system a product to be auctioned. Buyers (Buyer object) are the users who participate in auctions. Each category has its own attributes. These two objects are formed by specialising a third object, the User object. The User object keeps the general information of a user.

There is a ternary relation between the AuctionHouse object, the Seller object and the Product object. This relation reflects the real world, as long as the submission of a product concerns the seller, the auction house and the product. This relation has as attributes the start-up value and a deadline date, which is by when the seller’s product must be auctioned.

The other ternary relation is that between the Buyer object, the Auction object and the AuctionHouse object. Its attributes are the value and the time of a buyer’s bid.

Between the Auction object and the Product object, there is a 1-1 relation. That is because each product is auctioned by one and only one auction, and each auction is created for one product.

4.2 Logical Design

In this paragraph we shall describe the objects of the system and how they relate and co-operate with each other in detail.

4.2.1 Description of Applets

AuctionApplet
A user can participate in an auction, by invoking this applet. He/she can choose an auction, see some information relative to this auction (like product description, start value, and the number of bidders), and submit a bid.

ObserveApplet
A user can observe an auction, by invoking this applet, even if he/she has not registered before. The observed auction can be chosen from a list of auctions, but bidding is not allowed.

TransactionApplet
By invoking this applet, a user can participate in an auction or declare a product, giving the appropriate login and password. This is the authentication applet.

DeclarationApplet
By invoking this applet a user can declare the product that he/she wants to submit for an auction. A description of the product is given along with the desired price and a deadline, by which the product must be auctioned.

RegistrySellerApplet/RegistryBuyerApplet

These applets allow registration to the system.

AdminApplet
By this applet the administrator of the system can control the whole system from any computer. The administrator has the capability to check the registry file and to remove users. Also, he can see the already auctioned products, the successful bidders and the associated history file (how users were bidding). He/she can set a Standby auction Inactive, and then set it as Standby
. Furthermore he can check the state of all auctions in the system, and if he wants he can change it. The lifecycle of an auction starts when a user submits it to the system, and ends when a buyer obtains the product through the auction.

4.2.2 Description of Objects

AuctionHouse
Description: This is the main object of the system. It takes care of the creation, initialisation and the synchronisation of the other objects.

Functions: As the system begins, it checks if there is any product to be auctioned. If there are some, it creates an auction for each product.

The users’ authentication takes place with the TransactionApplet, which interacts with the object AuctionHouse.

If we have a product declaration, AuctionHouse saves it in the appropriate database, and creates an auction for it.

If an auction has completed, AuctionHouse kills the associated object to free resources from the system.

Auction
Description: This object is created by the object AuctionHouse, if there is a product to be auctioned.

Functions: Besides its core function as implied by the description, it informs the users of that auction about the current value of the product, the number of bidders and the current hit number of the auction (an auction is concluded, as usual, on three successive hits).

Buyer
Description: This object’s role is to serve a user’s requests for registration, then giving him/her the capability to participate in an auction.

Functions: It checks a login and a password if they exist in the database, and creates new entries.

This object
 is a kind of cache. It receives the user’s request, and then it forwards it to the object HashBuyer, which manages the database.

Because the object HashBuyer is unique, the object Buyer serves the users’ request by cloning itself. The efficiency of the system is increased by this implementation, as the user’s request is no longer at his/her PC, but in the server of the system, and it waits to be served.

Product
Description: This object serves the sellers’ request for a product to be auctioned.

Functions: It announces to AuctionHouse a new product. This object is a kind of cache too. It receives the requests from the DeclarationApplet for a product declaration and forwards them to the AuctionHouse.

SBuyer
Description: This object stores information about buyers.

SSeller
Description: This object stores information about sellers.

Infoproduct
Description: This object stores information about the product that will be auctioned.

4.2.2.1 Database management

Voyager 2.0.0 (beta 2) provides programmers with a light database. In this database a programmer can only store Voyager’s objects of the same type. The above feature leads us to use more than one Voyager servers, one for each database we need. It should be noted that this is a limitation of the current implementation of the Voyager platform.

SoldProduct/VectorProduct

Description: The main job of these objects is to store objects of type Infoproduct. The object SoldProduct stores InfoProduct as an already sold product. Object VectorProduct stores InfoProduct as a product that will be auctioned.

Function: The main structure of these objects is a Java Vector and hence their function is vector management.

HashBuyer/HashSeller

Description: These two objects store SBuyer and SSeller objects equivalent into hash tables.

Function: Hashtable management. Java supplies the required management methods.

4.2.3 Interaction of Objects

In this chapter we describe how the objects interact with each other and the messages that they exchange.

4.2.3.1 Transactions

If a user wants to declare a product or to participate in an auction, he/she must give his login and password. These will be checked by the system and if they are valid, the user can declare a product or participate in an auction.

The steps that the system follows are (shown in Figure 2):

1. If the user wants to enter in the system as a seller, TransactionApplet will send a message to object Seller with the user’s login and password as content, to check them.

2. Object Seller communicates with object HashSellers that manages the database of sellers.

3. If the entry exists, the object HashSeller will return the appropriate value to the object Seller.

4. Object Seller forwards the received value to TransactionApplet.

5. If TransactionApplet receives the message that the user is valid, it will inform object AuctionHouse about the fact that a user wants to enter in the system. Then it sends to AuctionHouse the user’s IP address, login and password. The TransactionApplet then connects the user with DeclarationApplet from which he/she can declare a product.

The same procedure will be followed in the case that the user is a buyer. The only difference is in step 5, where now the TransactionApplet will connect the user to AuctionApplet instead of DeclarationApplet (not shown in the figure below).

Figure 2: Authentication of users.
4.2.3.2 User Registry

The procedure for registering a user is the following (see Figure 3):

1. After the user has entered his/her details, the RegistryApplet sends a message to object Seller to check if there is an entry with the same login and password.

2. Object Seller communicates with object HashSeller that manages the appropriate database.

3. Object HashSeller checks the login and password and returns to object Seller the appropriate message.

4. Object Seller forwards the received message to RegistrySellerApplet. Then the user is informed about the progress of the registration.

Figure 3: User registration.

4.2.3.3 Observe an Auction

A user can observe an auction without having registered before. This can be done through the ObserveApplet. The procedure is the following (see Figure 4):

1. The object AuctionHouse is informed that a user wants to enter in the system to observe an auction.

2. The object AuctionHouse informs the user (through ObserveApplet) about the schedule of the auctions, these are the auctions that take place right at that time.

3. The user decides which auction to observe and connects with it.

4. The object Auction informs ObserveApplet for the current state of the auction.

Figure 4: Auction observation.

4.2.3.4 Initialization

At program start-up, the object AuctionHouse creates all the other objects. If the system has been shut down before, objects that manage the databases are woken up due to their persistence, and the object AuctionHouse is connected to them.

If there are any products that have not been auctioned yet, the object AuctionHouse will create an auction for each of them. After that, the object AuctionHouse awaits some event. This event will be generated by a user, or by the system administrator or by an object of the system (auction termination for example).

4.2.3.5 Product Declaration

If a user wants to declare a product to be auctioned, the following procedure is carried out (see Figure 5):

1. The DeclarationApplet is connected to object Product and sends it a product description.

2. Object Product communicates with AuctionHouse and informs it about the new product which must be auctioned.

3. AuctionHouse creates an auction for this product and update its schedule about the new auctions.

Figure 5: Product declaration.

4.2.3.6 Carrying out an Auction

If a user wants to participate in an auction, he/she can do that through the AuctionApplet (see Figure 6).

1. The AuctionApplet is connected with object AuctionHouse and sends it the user’s IP address.

2. The object AuctionHouse informs the user, through the AuctionApplet, about the auction schedule.

3. After the user selects the desired auction, AuctionApplet will be connected with that auction and will send it the user’s IP address
.

4. The object Auction sends to AuctionApplet information about the current state of the auction, like the start-up value, the current value and the number of occupants at that time.

5. After that, the user can participate in the auction. Note that each auction creates an auxiliary object that helps the Auction object to keep track of hit counts.

6. When the auction is finished, the Auction object announces to users the successful bidder, and informs the AuctionHouse about the progress of the auction.

7. The AuctionHouse object kills the Auction object, to free resources from the system, and stores the history file of that auction.

Figure 6: Carrying out an auction.

4.2.3.7 System Administration

The system administrator can control the whole system through the AdminApplet
. This applet interacts with the main objects of the system (AuctionHouse, SoldProduct, HashBuyer and HashSeller).

When AdminApplet is started (see Figure 7), it is informed by the AuctionHouse about the schedule of the auctions and the state of the auctions. By the SoldProduct, it obtains information, about the list of already being auctioned products. By the HashBuyer and HashSeller it obtains information about the list of buyers and sellers that have already been registered in the system.

The system administrator can interact with any of the above objects to perform administrative operations. These operations may be the removal of a user (seller or buyer) from the system, the changing of an auction’s state (from Active to Standby and vice-versa), the removal of an already auctioned product from the appropriate database, and finally the display of a history file of an auction and of information about the winner of that auction.

Figure 7: System administration.

4.2.4 Voyager Features

We will describe below the basic concepts of Voyager, which are used for the development of the system.

4.2.4.1 Interfaces, classes and objects

Interfaces are Java constructs. An interface doesn’t contain code and data; it defines a set of methods, which will have to be provided by every class, that implements the interface. Interfaces provide a flexible way to implement multiple inheritance mechanisms without the overhead incurred by multiple inheritance per se.

4.2.4.2 Voyager-Enabled programs

When a Voyager-enabled program starts, it automatically spawns threads that provide timing services, perform distributed garbage collection and accept network traffic. Each Voyager-enabled program has a network address consisting of its host name and a communication port number, which is an integer unique to the host. Port numbers are usually randomly allocated to programs. This is sufficient for clients communicating with remote objects. However, if a program will be addressed by other programs, somebody can assign a known port number to the program at start-up.

4.2.4.3 Constructing a remote object and a proxy (virtual reference) to it

A remote object is created simply with the instruction Voyager.construct(String implementation, String destination). String implementation refers to the type of the constructing object and String destination is the address of the destination program, where we want to create the remote object. If the class code of the remote object doesn’t exist in the destination program, Voyager’s network class loader automatically loads class code in it.

When a remote object is constructed, a proxy object whose class implements the same interfaces as the remote object is returned. Voyager dynamically generates the proxy class at run time. The proxy can receive messages, forward them to the object, receive the return value, and pass the return value on to the original sender. If the remote object throws an exception, the exception is caught and passed back to the proxy, which throws it to the caller.

4.2.4.4 Value-adding Interfaces

When a remote object is constructed, Voyager wraps the object in a Voyager component. A Voyager component extends the object with special interfaces (IIdentity, IMobility, ILifecycle, IProperty,and IProxy) that add value to it.

· The IIdentity interface aliases an object and gives access to its current address.

· The IMobility interface moves an object.

· The ILifecycle interface controls the lifecycle and persistence of an object.

· The IProperty interface associates key/value pairs with an object.

· The IProxy interface supports modification of various attributes of a proxy.

4.2.4.5 Lifecycle and Persistence

A programmer can specify and change the lifecycle of an object. The lifecycle is the duration of existence for an object. When an object reaches the end of its lifecycle, it dies and is garbage collected. The default lifecycle for an object is to live as long as at least one regular Java reference is made or a proxy points to it.

Remote objects can also be persistent. Persistence is the ability of an object to live beyond an application’s duration. Persistence is achieved by writing the object to a database, which is specified at Voyager start-up. Later, when a message is delivered to a persistent object not currently in memory, Voyager loads the object from the database and activates it.

4.2.4.6 Mobility and Moving Objects

By default, all serialisable Voyager objects are mobile. Mobility is the capability of objects to be moved from one virtual machine to another within a computer or a network.

4.2.4.7 Garbage collection

Garbage collection is the automatic destruction of an object, freeing the memory used by the object for reclamation by the Java virtual machine. Garbage collection also deletes a persistent object from the program database, in which it is established, when it’s necessary.

5. Epilogue

The above system has been developed to the level of a research prototype [4] and will be the basis of a commercial product to be developed, to serve the varying needs of the supplier community on auction variant services. The seamless integration of Java and Voyager over the WWW has meant that a truly distributed system has been developed with the potential to easily adopt it to other real time applications. Among our research and development priorities are the maturing of the existing functionality as well as the development of autonomous bidding agents with the help of machine learning techniques for behaviour modelling.

References

[1]
http://nas.is/rsf/

[2]
http://www.javasoft.com

[3]
http://www.objectspace.com/products/voyager/index.html

[4]
Bouganis, C. and D. Koukopoulos. An Electronic Auction System over the WWW. Diploma Thesis at the Dept. of Computer Engineering and Informatics, University of Patras, Greece, 1998 (in Greek).

TECHNICAL REPORT No. 99.03.02

“A Real-Time Auction System over the WWW”

Christos Bouganis, Dimitris Koukopoulos, Dimitris Kalles

March 16, 1999

� http://www.bonsai.com

� http://www.jjmanning.com

� http://www.copart.com

� A distributed computing platform developed by ObjectSpace and described in more detail later in this paper.

� http://www.objectspace.com

� An object request broker is a platform/program, which gives the opportunity to programmers to develop distributed applications.

� Not yet implemented.

� OMT is the acronym of Object Modelling Technique.

� The system may refuse a product if the product is out of the products’ types that the auction house normally auctions; for example an auction house about cars might not accept to auction a painting.

� An Auction may be Active (a user has already made a bid), or Standby, (no user has made a bid yet), or Inactive (the auction is not opened to users yet).

� Because the object HashBuyer is unique, the object Buyer serves the users’ request by cloning itself. The efficiency of the system is increased by this implementation, as the user’s request is no longer at his/her PC, but in the server of the system, and it waits to be served.

� This is necessary if we want to attain two-way communication, without triggering the events from one side only.

� We suggest the solution of administrating the system through an applet, because it gives the administrator the capability to control the system from any location.

__

TECHNICAL REPORT No. 99.03.02

1

_966082833.doc
����������������������������

3

2

1

Auction

AuctionHouse

Product

DeclarationApplet

_966083183.doc
�����������������������

AuctionHouse

SoldProduct

HashSeller

HashBuyer

AdminApplet

_983084568.doc

Has

1-1 Set-up

announce()

purchase()

Type

Description

Product

Initialization()

StartAuction()

EndAuction()

SellerInform()

Name

IP address

AuctionHouse

bid()

Product description

Hit number

Current value

Startup value

Information

(no. occupants etc)

Auction

Bid

Time

Startup value

Deadline

infoProduct()

infoPrice()

Credit card

Buyer

infoSellingPrice()

infoAccept()

Bank account

Seller

add()

modify()

erase()

ID card

Login

Password

Profile

e-mail

Address

User

_978516002.doc
[image: image1.emf][image: image2.emf]

_966083017.doc
��

AuctionHouse

Timer

Auction

AuctionApplet

6

5

7

6

5

4

3

2

1

_966082640.doc
����������������������������

4

3

2

1

HashSeller

Seller

RegistrySellerApplet

_966082746.doc
������������������

4

3

2

1

ObserveApplet

AuctionHouse

Auction

_966082271.doc
���

message direction

Symbols

process

5

AuctionHouse

4

3

2

1

HashSeller

Seller

Transaction Applet

