
Randomized Approximation Schemes for

Scheduling Unrelated Parallel Machines

Pavlos S. Efraimidis� Paul G. Spirakis

Computer Technology Institute

Department of Computer Engineering and Informatics

University of Patras

efraimid@cti.gr, spirakis@cti.gr

Abstract

We consider the problem of Scheduling n Independent Jobs on m Unrelated Parallel Ma-

chines, when the number of machines m is �xed. We address the standard problem of minimiz-

ing the makespan of the schedule (SUM) and the bicriteria problem of scheduling with bounded

makespan and cost (SUMC) and show for them randomized fully linear time approximation

schemes. While matching the approximation guarantee and the complexity of the best known

sequential results of Jansen and Porkolab ([12]), the proposed algorithms exhibit a signi�cantly

simpler and more general rounding scheme, especially for the bicriteria SUMC problem, and

admit simple optimal work parallelizations1 of O(logn){time complexity. The core of the algo-

rithms, which also draw techniques from other related works ([12], [11], [1]), is an interesting

new randomized rounding procedure, the Filtered Randomized Rounding (FRR). In the set-

tings of the problems considered, FRR boosts the deviation bounds of the rounded linear packing

constraints to any given constant ratio.

Finally, we de�ne the notion of poly{bottleneck combinatorial optimization problems and

use it to build O(n logn log logn) time approximation schemes for two natural optimization

versions of SUMC, that is minimizing the makespan when the cost of the schedule is bounded

(SUMCoptT) and minimizing the cost when the makespan is bounded (SUMCoptC). These

algorithms too, admit simple optimal work parallelizations.

�Financial support from the Bodosaki Foundation to perform doctoral studies is gratefully announced. Bodosaki

Foundation, Leoforos Amalias 20, 10557 Athina, Greece
1Optimal work parallelization means that the parallel work (product of running time and number of processors)

is equal to the sequential running time.

1 Introduction

Scheduling n independent jobs on m Unrelated Parallel Machines raises the problem of assigning

n jobs j = f1; : : : ; ng to m machines i = f1; : : : ;mg in the way that each job is processed without

interruption on one of the machines, and at any time, every machine processes at most one job.

The processing time for job j on machine i is pij . For each schedule, the maximum load on any

machine is the makespan of the schedule. The objective of the common scheduling problem SUM

is to �nd a schedule of minimum makespan. In the bicriteria problem SUMC, the assignment of

each job j to a machine i has, besides the processing time pij , a cost cij , and the objective is to

�nd a schedule of bounded cost and makespan.

Due to its theoretical and practical importance, the problem of scheduling n independent jobs on

m unrelated parallel machines has been widely studied. It is known to be NP-hard when the number

of jobs n and the number of machines m are free parameters of the problem, and interestingly, it

remains NP-hard even when the number of machines is de�ned to be m = 2. For the general

problem, where both parameters m and n are speci�ed as part of the problem instance, the best

known results are due to Lenstra, Shmoys and Tardos. They showed in [15] a polynomial time

2-approximation algorithm for the general problem and in the same work they also proved that,

unless P=NP, no approximation ratio better than 3=2 is possible. This inapproximability result

raises the natural question whether better approximation results can be obtained for the case where

the number m of machines is a constant.

The focus of this work are approximation algorithms for SUM and SUMC when the number

of machines is �xed, and henceforth the number of machines is always assumed to be a constant.

Horowitz and Sahni showed in ([11]) how to obtain for SUM a polynomial on n and 1=�, (1 + �){

approximation algorithm for any �xed � > 0. Such a family of algorithms is called a fully polynomial

time approximation scheme (FPTAS). A polynomial on n (1+ �){approximation algorithm for any

�xed � > 0 where given in [15]. Such an algorithm is called a polynomial time approximation

scheme (PTAS) since its running time depends exponentially on 1=�. Even though in this aspect

the algorithm of [15] is inferior to the one of [11], it achieves a signi�cantly smaller space complexity

than the former algorithm. Kopidakis, Fayard and Zisimopoulos presented in [14] a linear time

PTAS for SUM�, a restricted version of SUM where all processing times are within a constant

factor of each other.

Recently, Jansen and Porkolab showed in [12] linear time approximation algorithms for SUM

and SUMC. More precisely, they show a linear time approximation scheme for SUM and a relaxed

decision procedure (RDP) for SUMC. A RDP is an algorithm that given a minimization problem

and and a value d, an �-relaxed decision procedure

� either decides that there is no solution of objective value at most d.

� or returns a solution of objective value at most (1 + �)d

The RDP for SUMC in [12] accepts as input an instance of SUMC and values T for makespan

and C for cost, and either �nds a schedule of makespan and cost at most (1 + �)T and (1 + �)C

respective, or decides that there is no schedule of makespan and cost at most T and C respectively.

A randomized RDP (RRDP), is a randomized algorithm that given a minimization problem and

1

and a value d, with probability of success at least p > 1
2
, either decides that there is no solution of

objective value at most d, or returns a solution of objective value at most (1 + �)d.

Due to the fact that SUMC has two objectives, i.e. the makespan T and the cost C of the

schedule, several optimization versions of SUMC are possible. Two natural problems are obtained

by specifying an upper bound on the one objective and then optimizing the second objective under

this condition. In this way, let SUMCoptT be the problem of �nding for a given instance of SUMC

and a speci�ed cost value C, the schedule of minimum makespan for cost at most C. Similarly let

SUMCoptC be the problem of �nding for given SUMC and makespan T a schedule of minimum

cost C and makespan at most T . A third option is the problem SUMCoptTC that optimizes a

linear function of the makespan and the cost. The RDP for SUM of [12] is used in the same work

for a linear time FPTAS for SUMCoptTC.

In the �eld of parallel algorithms for SUM and SUMC we are aware of the work of Serna and

Xhafa, who claim in [23] a randomized (2 + �){approximation algorithm for SUM and a random-

ized a (2 + �){makespan 2{cost approximation algorithm for SUMCoptC. Both algorithms run in

polylog(N) time on O(N) processors, where N is the instance size. Another related work is [4],

where the authors propose a framework that achieves parallel polylog(n) time approximation algo-

rithms for SUM and SUMC. However the results in [4] are not directly comparable with the current

work since they work for any number m of machines and achieve a logarithmic performance bound.

A randomized PTAS (RPTAS) is a randomized algorithm that accepts as input a problem

instance and a constant � > 0, runs in time polynomial on the size N of the instance, and produces

as output a (1 + �){approximate solution with probability p > 1
2
.2 If additionally the running time

depends at most polynomially on 1=� then it is a randomized FPTAS (RFPTAS).

We �rst show algorithm A-SUM�, a simple linear time (RFPTAS) for the restricted SUM�

problem. Algorithm A-SUM� is based on approximate linear programming and standard random-

ized rounding, and it is meant to be a smooth introduction to the techniques that will be used

in the more involved algorithms of this work. However, algorithm A-SUM� is itself an interesting

result, due to its simplicity and since it matches the complexity and the performance guarantee of

the best known speci�c algorithm for SUM� of [14].

We then address the standard SUM problem and the bicriteria SUMC problem and present ef-

�cient randomized approximation algorithms for both problems. The core of our algorithms, which

also draw techniques from the related works ([12], [11], [1]), is an interesting new randomized round-

ing procedure, the Filtered Randomized Rounding (FRR) technique. The striking feature of FRR

is that, while rounding fractional schedules, it boosts, in the settings of the problems considered,

the deviation bounds of the rounded linear packing constraints to any given constant ratio. FRR

appears to be a general technique of independent interest that uses randomized rounding, Cherno�

bounds and combinatorial arguments from [12], [11], and [1], and it should �nd more applications

in rounding procedures for other integer linear programs. The algorithms based on FRR are very

simple, once the general FRR technique has been understood.

We show algorithm A-SUM a linear time RRDP for SUM and use it to build a linear time

RFPTAS for SUM. Similarly, we show algorithm A-SUMC a linear time RRDP for SUMC. These

2The success probability p > 1
2
can be boosted to any constant probability in [p,1) by repeating the experiment

a constant number of times.

2

results for SUM and SUMC, while matching in performance guarantee and complexity the best

known sequential results of Jansen and Porkolab ([12]), exhibit, due to the FRR rounding technique,

a signi�cantly simpler and more general rounding scheme. This becomes especially evident on the

approximation algorithm for the bicriteria SUMC problem.

Finally, we de�ne the notion of poly{bottleneck combinatorial optimization problems and use it

to build O(n log n log log n) time approximation schemes for two natural optimization versions of

SUMC, that is minimizing the makespan when the cost of the schedule is bounded (SUMCoptT)

and minimizing the cost when the makespan is bounded (SUMCoptC). For the combined objective

problem SUMCoptTC, a linear time RFPTAS can be obtained by using algorithm A-SUMC within

the technique of [12, Theorem 3.2].

All algorithms admit simple optimal work parallelizations which run either in O(logn) or in

O(log n log log n) time and clearly outperform the best claimed parallel algorithms for SUM and

SUMCoptC ([23]), both in the performance ratio (� vs. 2 + �) and in the running time ((O(log n)

or O(log n log log n)) vs. polylog(n)). The parallel running times are valid for the EREW PRAM,

the most realistic of the PRAM models. Furthermore, since the algorithms are executed in a

constant O(1) or at most a very small number (O(log n log log n)) of iterations, these algorithms

imply e�cient parallel algorithms on more practical parallel computation models, like the BSP

([25]) or the LogP ([2].

The algorithms of this work follow the common paradigm of calculating a fractional schedule

with Linear Programming techniques and then rounding it to a near-optimal integer schedule. The

linear programs that occur in our algorithms have a block-angular structure and are approximated

very e�ciently, sequentially or in parallel with the logarithmic-potential based price-directive de-

composition method (PDD) of Grigoriadis and Khachiyan ([6]).

When we say that an event holds "with high probability (whp)" we will mean that its probability

is at least 1 � 1=nf for some large enough f. The abbreviation "wlog" stands for the expression

"without lost of generality". E[Xij] represents the mean value of the random variable Xij . N will

always represent the size of a problem instance. The set f1; 2; : : : ; ng will be represented as [n].

Section C of the Appendix provides an easy access to the important de�nitions and notations used

in this work. The rest of this work is organized as follows. First a simple RFPTAS for the restricted

problem SUM� is shown in Sec. 2. Then the FRR technique is applied in Sec.3 for a RFPTAS

for SUM and in Sec.4 for a RRDP for the bicriteria problem SUMC. The optimization versions of

SUMC are treated in Sec.5.

2 The SUMb Problem

SUM� is the standard SUM problem with the additional constraint that the processing times do

not di�er with each other more than a constant factor �. More precisely, there is a constant � such

that for every instance P of SUM�,
pmin

pmax
�

1

�
: (1)

where pmin = mini;j pij and pmax = maxi;j pij. Even though SUM� is a restricted subcase of SUM,

is has an autonomous presence in the literature and several speci�c approximation algorithms are

3

known for it. The best speci�c sequential result is the linear time FPTAS of [14]. In [23] the

authors claim a randomized polylog(n) time parallel algorithm for SUM� with approximation ratio

(2 + �). In what follows we will show a simple linear time RFPTAS for SUM�. The algorithm

admits a simple optimal work (O(log n)){time parallelization on a n
log n

processor EREW PRAM.

The algorithm SUM� uses only a subset of the techniques that are presented in this work, and

can serve as a smooth introduction to the main algorithms A-SUM and A-SUMC de�ned in the

following Sections. Note that algorithm A-SUM of Sec. 3 for the SUM problem can also solve the

SUM� problem. However A-SUM� is simpler than A-SUM algorithm and achieves on SUM� a

faster, within a constant factor, running time.

2.1 Algorithm A-SUM�

The algorithm A-SUM� has a very simple structure. A fractional schedule is found with a linear

programming technique, and then it is rounded to an approximate integer schedule with a standard

randomized rounding technique. This approach can satisfy any given constant approximate ratio,

if the number of jobs n larger than an appropriate constant n0, which depends on m, �, and �. For

instances with number of jobs n less than n0 the optimal schedule can be found in constant time

with a brute force method.

Input: An instance of SUM� and constants � > 0 and 0 < � <
1
2
.

Output: Produce with probability at least (1� �) an (1 + �)-approximate schedule.

Step 0: Initializations. Let �2 = �4 =
�
3
. Set � =

3 ln(m=�)
(�4)2

and n0 = m � � � �.

Step 1: Small number of jobs. IF (n < n0) THEN the number of jobs n is less than a constant

and hence the optimal schedule can be found in O(1){time with a brute force method.

Step 2: Integer program formulation. The number of jobs n is n � n0. Formulate SUM� as an

integer linear program and relax it to a linear program.

Step 3: Approximate LP solution. Find a (1 + �2)|approximate solution to the LP.

Step 4: Rounding. Round the approximate fractional solution to an approximate integer schedule

with randomized rounding. END

2.2 Analysis of algorithm A-SUM�

Normalization. The problem is scaled with 1=pmax. The normalization is done only to simplify

the analysis of the algorithm and it is not used in the algorithm. Now:

8 i; j :
1

�
� pij � 1 : (2)

Let �2 = �4 =
�
3
= O(�), � =

3 ln m

�

(�4)2
. Let � be the marginal mean value for the processing load

on each machine and n0 = m � � � � be a threshold value for the number n of jobs. Note that � and

n0 are constants.

4

Small number of jobs. If n < n0 then there are at most mn0 possible assignments of the jobs

to the machines, and hence the optimal schedule one can be found in constant time with a brute

force assignment. This constant time can be further reduced to a smaller fully polynomial constant

time with techniques T1 and T2 of Sec. 3.3 for �nding only a (1 + �) approximate schedule, which

is adequate for the algorithm.

Fractional Schedule. The number of jobs n is assumed to be n > n0. It will be shown that under

this condition the makespan of the optimal schedule is large enough to guarantee with positive

probability very tight randomized rounding. The integer program formulation of SUMb is:

min �

s:t: Pn
j=1 pijxij � � (i = 1; : : : ;m)Pm
i=1 xij = 1 (j = 1; : : : ; n)

Z � 0; xij 2 f0; 1g0 (i = 1; : : : ;m; j = 1; : : : ; n)

For each pair (i; j) the binary variable xij is 1 if job j is assigned to machine i and 0 otherwise.

Relaxing the integrality constraints on xij to xij � 0 gives the linear program LP-SUM� that can

be solved optimally or approximately with any of several known polynomial time algorithms for

linear programming (see Sec. B of the Appendix). However LP-SUM� has speci�c properties that

can be used to achieve very e�cient approximate solutions. The problem variables of LP-SUM�

are grouped into n independent m-dimensional simplices (blocks) and there is a constant number

of positive packing constraints. These properties are exploited by the logarithmic-potential based

PDD algorithm PDD of Grigoriadis and Khanchiyan ([6]), to approximate LP-SUM� within (1+�1).

This is formally stated in the following Claim which will be used throughout this work. The proof

is placed in Sec. B of the Appendix.

Claim 2.1 The linear program LP-SUM� can be approximated within any constant ratio � in

(O(n)){sequential time and in O(log n){time on a O(n= log n){processor EREW PRAM.

Let �� be the optimal objective value of LP-SUM� and let �1 be the approximate objective value

produced by the PDD algorithm for a given error ratio �2. Then:Pn
j=1 pijxij � �1 (i = 1; : : : ;m)Pm
i=1 xij = 1 (j = 1; : : : ; n)

Z � 0; xij � 0 (i = 1; : : : ;m; j = 1; : : : ; n)

The linear program LP-SUM� is the relaxation of the integer program formulation of SUM�. If

the optimal objective for the integer schedule problem is OPT then the optimal value �� of the

relaxed problem LP-SUM� cannot be larger than OPT. Furthermore the approximation ratio of

algorithm PDD guarantees that �1 � �
� � (1 + �2). Hence:

�
� � �1 � �

� � (1 + �2) � OPT � (1 + �2) : (3)

Let dj be the minimum processing time of job j, and let D be the sum of all dj:

8 job j; dj = min
i
pij and D =

X
j

dj : (4)

5

The de�nition of D implies that the optimal amount of work for processing all jobs is exactly D.

Simply assigning assigning every job j to the machine i that achieves the minimum processing time

dj for the job j, would give a feasible schedule of makespan at most D, even if in the worst case

all jobs j would have their minimum processing time on the same machine i. Since, on the other

hand, the total work of the machines is at least D, even if this work would be optimally distributed

to all machines, the makespan could still not be less than D=m. Hence:

D

m
� OPT � D : (5)

The lower bound D
m
on the makespan is valid even if fractional schedules are admitted. This fact

together with equation 3 provides a useful lower bound on the approximate fractional makespan

�1:

D

m
� �

� � �1 : (6)

Note that Equ. 5 and 6 are also valid for the SUM problem (the condition on the sizes of the

pij has not been used for showing the equations) and they will be used in Sec. 3 and Sec. 4. The

combination of Equ. 5 and Equ. 2 gives D
m � n

Bm and hence:

�1 �
D

m
�

n

Bm
�

mB�

Bm
� � =

3 log
�
m
�

�
(�4)2

: (7)

Equations 4, 7 and 3 give:

3 log
�
m
�

�
(�4)2

� �1 � OPT � (1 + �2) : (8)

Rounding. The approximate fractional solution to the scheduling problem will be rounded to

an approximate integer solution, with a standard randomized rounding ([21]) technique. More

precisely, the appropriate rounding procedure that will be called "Exclusive" Randomized Rounding

(XRR) is similar to Raghavan and Thompson's randomized rounding technique of Sec. 2 in [21],

but generalized to the case of weighted sums of Bernulli trials. For each job j independently, exactly

one of the xij is set to 1 and the rest is set to 0. setting the variable xij to 1, represents the fact

that job j is assigned to the machines i. The rounding is done in such a way, that the probability

for variable xij to get the value 1 is equal to its fractional value xij . Let �2 be the makespan of the

rounded schedule.

For each machine i, let Si be its processing load in the fractional schedule Si =
P

i pijxij .

For each constraint the rounding procedure essentially replaces the fractional variable xij with a

Bernulli trial Xij such that E[Xij] = xij. If 	i is the processing load of each machine i in the

rounded schedule, then 	i is the random variable 	i =
P

i pijXij . Since the Bernulli trials Xij

of the same constraint are independent with each other, the random variables 	i are equal to the

Weighted Sums of independent Bernulli Trials. By linearity of expectation, for each machine i, the

mean value of its rounded load 	i is equal to its load Si in the fractional schedule:

8 i : E[i] = E[
X
i

pijXij] =
X
i

pijE[Xij] =
X
i

pijxij = Si : (9)

6

This shows that the mean values of the 	i satisfy the packing constraints of the fractional solu-

tion. However the random variables 	i might deviate from above their mean value and hence the

makespan of the rounded schedule might be larger than the fractional makespan. The following

bounds are a generalization of Raghavan and Spencer's Cherno�-like bounds on the tail of the

distribution of the Weighted Sum of Bernulli Trials ([20], [19]). The proof is placed in Sec. A of

the Appendix.

Theorem 2.1 Let � � 0 be a positive real number and let �1; �2; : : : ; �r be reals in (0,1]. Let

X1;X2; : : : ; Xr be independent Bernulli trials with E[Xj] = pj. Let 	 = � +
Pr

j=1 ajXj. Then

E[] = �+
Pr

j=1 ajpj = S. Let �4 > 0, and T � S = E[] > 0. Then

Prob[> (1 + �4)T] < e

�
�

(�4)
2
T

2(1+
�4
3
)

�
and for �4 < 1 : e

�
�

(�4)
2
T

2(1+
�4
3
)

�
� e

�
�

(�4)
2
T

3

�
: (10)

Note 2.1 Note that the tightness of the Cherno� bounds depends on the relative size of the max-

imum coe�cient aj and the mean value S of the sum of the random variables. Equation 10 can

bound with positive probability, the deviation above the value T � S, by any given constant ratio,

if the ratio of S
maxjfajg

has a large enough value. This fact becomes more evident in the simpli�ed

bound for �4 < 1 of the same Equation.

Theorem 2.2 For �4 2 (0; 1) and � 2 (0; 1), the makespan of the rounded schedule is, with proba-

bility at least (1� �), not larger than �1(1 + �4).

Proof: The probability that the makespan of the schedule is not more than �1(1 + �4) is equal

to the probability that no machine load 	i in the rounded schedule is larger than �1(1 + �4). By

Equ. 10:

8 i : Pi = Probf	i > �1(1 + �4)�g � e
�

(�4)
2
�

3 �
�

m
: (11)

A su�cient bound on the probability that at least one machine in the rounded schedule has load

more than �1(1 + �4) is the sum of the probabilities Pi.

Probf�2 > (1 + �4) � �1) = Probf9i : 	i > �1 � (1 + �4)g �
X
i

Pi � � : (12)

If �2 � �1(1+�4) THEN �2 � OPT (1+�2)(1+�4) � (1+�)OPT . Hence given an instance of SUM�

with n jobs and constants � > 0 and 0 < � < 1, algorithm ASUMb produces with probability at least

(1� �) a schedule of makespan not larger than (1+ �)OPT. The complexity of the PDD algorithm

is O
�
n
�
m
�

�2
ln
�
m
�

��
on 1 processor and O

�
log(n)

�
m
�

�2
ln
�
m
�

��
on n

log n
processors. The XRR

procedure needs O(mn) time on 1 processor or O(m log n) time on n
log n processors. In the case of a

small number of jobs n < n0 a (1+�){approximate schedule can be found in O

�h
m2� log(m=�)

�3

im+1
�

time with the brute force enumeration technique T1 of Sec. 3.3. This completes the proof of the

main Theorem of this Section:

7

Theorem 2.3 Algorithm A-SUM� is a RFPTASfor the SUM� problem. A-SUM� runs in O(n))

sequential time and in (O(log n)){parallel time on a n
log n

{processor EREW PRAM.

3 The SUM problem

In this section, we present a linear time RFPTAS for the problem SUM of scheduling n independent

jobs on m unrelated parallel machines, when the number m of machines is �xed. We �rst show

algorithm ASUM , a RRDP for the decision version of SUM, and then use it to build a simple linear

time RFPTAS for the optimization version of SUM.

3.1 Algorithm A-SUM

Algorithm A-SUM is based on the same paradigm used in algorithm A-SUM� of �nding a fractional

schedule and then rounding it to an approximate integer schedule. The rounding is done with the

Filtered Randomized Rounding technique, since standard randomized rounding cannot satisfy the

tight approximation guarantee needed for the approximation scheme. The algorithm �rst selects

a constant number of large jobs and tries every possible assignment of them on the machines.

For each assignment ', a corresponding fractional schedule of all the jobs is found with the PDD

algorithm. Among all fractional schedules the one of minimum makespan is selected, and then it

is rounded with XRR to an integer schedule. Every job j in the rounded schedule, that is not a

large job (j =2 S`) and that has that has been randomly assigned to a machine i such that pij > 1

is called an "unlucky" job and it is removed from the rounded schedule. The result is a �ltered

rounded schedule that satis�es a very tight approximation ratio. All the unlucky jobs are scheduled

independently, each on the machine where its processing time is minimized. A simple combinatorial

argument shows that the total processing time for the �nal assignment of the unlucky jobs is at

most a given constant fraction of the optimal makespan. The �nal schedule is with probability at

least (1� �), a (1 + �){approximate schedule.

Input: An instance of SUM, the constants � : 0 < � � 1, and � : 0 < � < 1, and a feasible

makespan value T .

Output: A schedule of makespan at most (1 + �)T or the problem is infeasible for T .

Step 0: Initializations.

Let �1 = �2 = �3 = �4 = �5 = �6 =
�
7
= O(�). 8j; dj = minifpijg, D =

P
j dj , � =

3 ln 2m
�

(�4)2
,

� = e
2 + ln

�
2m
�

�
, and k =

l
� � � �m � m

�3

m
.

Step 1: Simple Filtering.

8i; j : IF pij > T THEN xij = 0

Step 2: Large jobs.

Let J` = fjjdj belongs to the k largest djg be the set of large jobs and let � be the set of all

possible assignments of the large jobs to the machines. Let �fbe an appropriate subset of �.

8

Step 3: Best Fractional Schedule xij.

8 assignment ' 2 �f do

1. Formulate the corresponding scheduling problem as an integer program ILP-SUM(').

2. Relax ILP-SUM(') to the linear program LP-SUM(').

3. Find the approximate fractional schedule with algorithm PDD.

Among all fractional schedules select the one of minimum makespan.

Step 4: Filtered Randomized Rounding.

1. Round the fractional schedule with XRR.

2. Filter : If a job j has been randomly assigned to a pij > 1 THEN job j is called "unlucky"

and it is removed from the schedule.

3. 8 unlucky jobs j, assign job j to machine i = argminifpijg

3.2 Analysis of algorithm A-SUM

In this section, it will be shown that algorithm A-SUM is a RRDP for SUM, that is, given an

instance of the SUM problem and a makespan T , it either produces a schedule of makespan at

most (1 + �)T or decides that there is no schedule of makespan at most T . To prove this, it is

su�cient to show that if T is a feasible value then algorithm A-SUM returns with probability at

least (1 � �) a schedule of makespan at most (1 + �)T . The input is an instance of SUM, the

constants � > 0, and � : 0 < � < 1, and a feasible makespan value T .

Initializations. Let � =
3 ln 2m

�

(�4)2
be a marginal mean value for the weighted sums of Bernulli Trials.

As in Sec. 2 let dj = mini pij be the minimum processing time for job j and D =
P

j dj be the

minimum total processing time for all jobs.

Normalization. To simplify the analysis, the problem is scaled by the factor �
T so that the given

makespan becomes T = �. As in the Sec. 2 the scaling is done only simplify the analysis of the

algorithm and it can be avoided in the real algorithm. The value of T = �, has been chosen so that

if all coe�cients pij would be pij � 1, then given a fractional schedule, the XRR rounding procedure

would return a integer schedule that satis�es the parameters of the approximation algorithm.

At this point, it would be to proceed as in Sec. 2, that is to �nd an approximate fractional with

the PDD algorithm and then XRR to round it an integer solution for SUM. However due to the

potential existence of arbitrarily large coe�cients pij > 1, the Cherno�-bound would not guarantee

good bounds on the deviations. The next steps deal exactly with this problem, the existence of

large coe�cients pij.

Simple Filtering. The �rst step is a "simple �ltering" procedure, that deactivates all xij for

which the corresponding pij is larger than T . This action does not inuence any integer schedule

of makespan at most T and hence T remains a feasible makespan value for the problem. After

simple �ltering, all active pij are not larger than T , but some of the pij can still be larger than

1. Now, �nding a fractional approximate solution with Claim 2.1 and then applying XRR, would

give approximate results but still with poor performance guarantees. It will be shown that it is

9

possible to obtain fractional schedules and to round them to approximate integer schedules that

with positive probability have makespan at most a factor (1 + �) larger than the makespan of the

fractional schedule, for any given constant � > 0. This is accomplished with a new randomized

rounding technique, called Filtered Randomized Rounding (FRR), that is based on standard XRR

and on certain combinatorial arguments, similar to combinatorial arguments used in [12] and [14]

to support di�erent scheduling algorithms. Before �nding an approximate fractional schedule, it is

necessary to treat a constant number of large jobs. The purpose of this step will become evident

in the sequel.

Large Jobs. Let k be the constant

k =

�
� � � �m �

m

�3

�
; (13)

and let the k jobs with the largest's dj (tights are resolved arbitrarily) be the "large jobs". Let J`
be the set of the k large jobs:

J` = fj j dj belongs to the k largest djg : (14)

Enumeration. Let � denote the set of all possible assignments ' of the large jobs j 2 J` to the

m machines. Since the number of machines m is a constant and the number k of large jobs is

constant, the cardinality of � is at most mk, also a constant. Let '� be an assignment of the large

jobs to the machines that is identical to the placement of the large jobs in an optimal schedule to

the SUM problem. The algorithm needs to work on the assignment '�, and since '� is not known,

the algorithm is executed for each of the possible assignments ' 2 �. The cardinality of � is

m
O(

m
2 log2(2m=�)

(�4)
2�3

)
: (15)

Even though this number is a constant for constants m and �4, it is not fully polynomial, since �4
appears in the exponent. In Sec. 3.3 it is shown how � can be replace by a smaller set, of cardinality

O(min

("
m

3 � ln(2�m
�
)

�4

#m
; m

O(
2 log(1=�)

�
)

)
(16)

at the cost of introducing at most an extra error ratio (1 + �5) � (1 + �6) to the �nal solution. In

the rest of the analysis it is assumed that the algorithm examines all assignments of � and the

approximation bounds are calculated under this assumption, which is later relaxed (Equ. 33) by

introducing the extra ratio (1 + �5) � (1 + �6) to the �nal approximation guarantee.

Fractional Schedule. Given the assignment '� of the large jobs J` to the m machines, the

problem of assigning the remaining jobs in an optimal way (to minimize the makespan) can be

formulated as the following integer linear program ILP-SUM('�). Let 'i be the load on machine i

due to the large jobs.

min Z

s:t:

'i +
P

j2[n]�J`
pijxij � Z (i = 1; : : : ;m)Pm

i=1 xij = 1 (j 2 [n]� J`)

Z � 0; xij 2 f0; 1g (i = 1; : : : ;m; j 2 [n]� J`)

10

Let �� be the optimal objective value of ILP-SUM('�). Since the value T is assumed to be

feasible for the problem and '
� is assumed to be the optimal assignment of the large jobs:

�
� � T : (17)

Let LP-SUM('�) be the linear program relaxation of ILP-SUM('�) obtained by relaxing the

integrality constraints on the variables xij to 8i; j : xij � 0. The linear program ILP-SUM('�)

has a block-angular structure and as in Claim 2.1 of Sec. 2 it can be approximated with PDD,

the logarithmic-potential based PDD algorithm of [6]. The complexity of ILP-SUM('�) is slightly

lower than LP-SUM� of Sec. 2 since a constant number of jobs is already assigned (by the a priori

assignment of the large jobs). This di�erence in the complexity is not important and can be ignored

in the analysis. Hence for given constant �2, the PDD algorithm will run in O(n) sequential time

and in O(log n) parallel time on n= log n processors, and it will produce a (1 + �2){approximate

fractional schedule. Let xij and �1 be the output produced by PDD. Then:

'i +
P

j2[n]�J`
pijxij � �1 (i = 1; : : : ;m)Pm

i=1 xij = 1 (j 2 [n]� J`)

Z � 0; xij � 0 (i = 1; : : : ;m; j 2 [n]� J`)

By the approximation guarantee of PDD and Equ. 17:

�1 � �
� � (1 + �2) � opt � (1 + �2) : (18)

For each ' 2 � the PDD algorithm �nds an approximate fractional solution to LP-SUM('). At

the end the algorithm selects among all fractional schedules the one with the smallest makespan

�2. Let [xij] be a fractional solution with makespan �2.

�2 = min
'2�

f �' j �' = �2 � approximate solution to LP-SUM(') found with PDDg : (19)

Hence:

�2 � �1 � T � (1 + �2) : (20)

Rounding. The fractional schedule [xij] will be rounded to an approximate integer schedule for

SUM. Let J be set of all jobs j and Js the set of all jobs except the large jobs Js = JnJ`. For

each job j 2 Js independently, exactly one of the xij is set to 1 and the rest is set to 0, that is each

job j independently is assigned to exactly one of the machines i. The probability for job j to be

assigned by the rounding procedure to machine i is equal to the fractional value xij . Let �3 be the

makespan of the rounded schedule. The rounding procedure is equivalent with replacing for j 2 Js

all variables xij with a corresponding Bernulli trial Xij , such that E[Xij] = xij. Since the rounding

is done for each job j independently, For each constraint i, the Bernulli trials Xij are independent

and hence the load 	i of each machine i in the rounded schedule is equal to the sum of a given

positive value 'i and the weighted sum of independent Bernulli trials 	i = 'i +
P

j2J 0 pijXij .

Let � = e
2 + ln

�
2m
�

�
be an appropriate deviation ratio and let E1 be the event:

E1 = f The makespan �3 of the rounded solution is �3 > � � �2g : (21)

11

Proposition 3.1 The probability of event E1 is at most �=2.

Proof: The proof is a simple application of the Cherno�-like Bounds for Weighted Sums of

Bernulli Trials of Theorem 2.1 and it is similar to the proof of Lem. 2.2 of Sec. 2. Since for

each i : E[i] � �2:

Probf	i > � � �2g � e

�
�

�
2
�2

2(1+
�

3
)

�
�

�

2 �m
: (22)

A su�cient bound on the probability of event E1 is the sum of the probabilities Pi:

ProbfE1g �
X
i

Probf	ig �
X
i

�

2 �m
�

�

2
: (23)

Let Ju be the set of unlucky jobs of the rounded schedule, that are all jobs j 2 Js that have

randomly assigned to a "bad" pij > 1.

Note 3.1 Unlike the large jobs of J` that are statically de�ned for every instance of SUM, the

notion of unlucky jobs is dynamical: Given a rounded schedule, a job is "unlucky" and belongs to

Js only if its processing time in the given rounded schedule is larger than 1 (and it does not belong to

J`). Any job that does not belong to J` and for which at least one coe�cient pij is larger than 1 can

possibly be a unlucky job in a rounded schedule. Since the rounded schedules are obtained randomly

from the fractional schedules, separate rounded schedules might have di�erent sets of unlucky jobs.

Filtering In order to achieve very tight bounds on the deviation of the makespan of the rounded

schedule, all unlucky jobs are simply removed from the rounded schedule. The remaining schedule

is called the �ltered rounded schedule. For each machine i, let the random variable 	0
i be:

	0
i = 'i +

X
j2Js AND pij�1

pijXij : (24)

	0
i corresponds to the load of the machine i due to all the remaining jobs, if unlucky jobs are

excluded. Note that the random part of the random variables 	0
i is a weighted sum of Bernulli

trials, where each weight is at most 1. Let �4 be the makespan of the �ltered rounded schedule and

let E2 be the event:

E2 = f The makespan �4 of the �ltered rounded schedule is �4 > (1 + �4) � �2g: (25)

Proposition 3.2 The probability of event E2 is at most �=2.

Proof: For each machine i, its load in the �ltered rounded schedule is the random variable 	0
i,

and the probability that 	0
i exceeds �2 � (1 + �4) can be bounded by the Cherno�-like bounds of

Theorem 2.1.

12

Probf	0

i > �2 � (1 + �4)g < B(�2; �4) �
�

2 �m
: (26)

The probability that at least one of the �ltered loads 	
f
i exceeds �2 � (1 + �4) is not larger than the

sum of the individual bounds for each i:

Probf�4 > �2�(1+�4)g = Probf9 i : 	0
i > �2�(1+�4)g �

X
i

�
Probf	0

i > �2 � (1 + �4)g
�
�

�

2
: (27)

The following simple combinatorial argument will be used to handle the unlucky jobs. Similar

arguments have been used in [1] and [12].

Lemma 3.1 Let d1; d2; : : : ; dn be a sorted sequence of real numbers d1 � d2 � : : : � dn > 0 and let

D =
Pn

j=1 dj. Let p be a non-negative integer, and �3 > 0 a constant. For k =
l
p
�3

m
, any set S of

reals S = f di j i > k g with j S j� p satis�es:

X
di2S

di � �3 �D : (28)

Proof: The number of jobs n is assumed to be larger than the constant k, or else a schedule can

be found by a brute force assignment. The real dk satis�es dk �
�3
p
�D. Since 8 di 2 S : i > k

and the reals are sorted in decreasing order 8 di 2 S : di � dk � �3
p
D . Hence:

X
di2S

di � p �
�3

p
�D � �3 �D : (29)

Lemma 3.2 For any set Jp of at most p = m � � �� jobs that do not belong to J` (Jp
T
J` = ;), the

sum of their minimum processing times dj is at most

X
j2Jp

dj � �3 � �2 : (30)

Proof: Simple application of Lem. 3.1.

Let E3 be the event that the sum of the minimum processing times dj of all unlucky jobs j 2 Jl

is larger than �3 � �2:
E3 = f

X
j2Jl

dj > �3 � �2g : (31)

Proposition 3.3 The probability of event E3 is at most �
2
.

13

Proof: By Proposition 3.1 the probability that the non-�ltered rounded schedule has makespan

larger than � � �2 is at most �
2
. Hence the probability that the total load on all machines in the

rounded schedule exceeds m � � � � is at most �
2
. Since each unlucky job has processing time larger

than 1, the probability that the total number of unlucky jobs in the rounded schedule is larger than

m � � � � is at most �
2
. Lemma 3.2 proves, that for any set Jp of at most p = m � � � � jobs such that

Jp
T
J` = ;, the sum of their minimum processing times dj is at most �3 � �2. Hence if each unlucky

job is assigned to the machine where its processing time is minimized, then even if in the worst

case all unlucky jobs end up on the same machine the makespan of the schedule does not increase

(additively) by more than �4 � �2.

Final Schedule. The �nal schedule is obtained from the �ltered schedule, by simply assigning

every the unlucky job j 2 Jp to a machine i, where pij = dj . Let �5 be the makespan of the �nal

schedule.

Proposition 3.4 Let E4 be the event: E4 = E2
S
E3. Then:

1. The probability of event E4 is at most �, and

2. IF event NOT(E4) THEN the makespan �5 of the �nal schedule is not larger than (1+ �) �T .

Proof: 1. A su�cient bound on the probability of the event E4 = E2
S
E3 that at least one of

E2,E3 is true, is the sum of their individual probabilities:

ProbfE2
[

E3g � ProbfE2g+ ProbfE3g � � : (32)

2. If event E4 is NOT TRUE then both events E2 and E3 are NOT TRUE and hence by Prop. 3.2

and 3.3 the makespan �5 of the �nal schedule is:

(�5 � �4 + �3 � �2) � (1 + �5) � (1 + �6)) �5 � (1 + �) � T : (33)

We have proven that given an instance of SUM, constants � > 0 and � 2 (0; 1), and a makespan

value T , A-SUM runs in fully O(n){sequential time and in O(log n){time on O(n= log n){processors

and with probability at least 1 � �, either produces a schedule of makespan at most (1 + �)T

or decides that T is not a feasible makespan value. The set of assignments �f has cardinality

F = min

��
m log(m=�)

�

�O(m)
;m

log(1=�)

�

�
and it can be calculated in

�
m log(m=�)

�

�O(m)
time with the

brute force enumeration techniques of Sec. 3.3. The cardinality of �f is O(F). Algorithm PDD

has to be executed once for each assignment �' 2 �f . The complexity of the PDD algorithm

is O
�
n
�
m
�

�2
ln
�
m
�

��
on 1 processor and O

�
log(n)

�
m
�

�2
ln
�
m
�

��
on n

log n processors. The XRR

procedure has to be executed only once in O(mn) time on 1 processor or in O(m log n) time on
n

log n
processors. Hence:

Theorem 3.1 Algorithm A-SUM is a O(n){time RRDP for SUM. The parallel running time of

A-SUM is O(logn) on a O(n
log n

) processor EREW PRAM.

14

The algorithm A-SUM can be used within a binary search procedure (Fig. 1) to build an

approximation scheme for the optimization version of problem SUM.

Corollary 3.1 The binary search procedure of Fig. 1 is a O(n){time RFPTAS for SUM. Its

parallel running time is O(log n) on a O(n
log n

) processor EREW PRAM.

Proof: Let P be an instance of SUM and let T � be its optimal makespan. Given the overall

approximation guarantee �, �i; i = 1; : : : ; 6 be appropriate values such that:
Q6
i=1(1 + �i) � 1 + �

and �
0 = �

1+�1
. Let L = dlog(m�1)e. Given the bound on the probability of failure, let �0 = �

L . An

example of appropriate values is �1 = �2 = �3 = �4 = �5 = �6 =
�
9
and �

0 = �
1+�1

. By Equation 5

the optimal makespan T
� is always bounded by D

m
� T

� � D. Let �1 : 0 < �1 < � be the

precision of the binary search procedure and let �0 = 1+�
1+�1

be the error ratio for algorithm A-SUM.

The binary search procedure of Fig. 1 seeks for the minimum value T1 2 [Dm ; D] that satis�es �0{

relaxed feasibility, that is when called with parameters T1, �
0, and �

0, algorithm A-SUM returns a

schedule of makespan at most (1 + �
0)T . Clearly T1 � T

� since all feasible makespan values satisfy

relaxed feasibility. Then after L steps the value T2 found by the binary search procedure satis�es

T2 � (1+�1) �T1 � (1+�1) �T
�. The makespan T of the schedule found by A-SUM with parameters

T2,�
0,�0 is at most T � (1 + �

0) � T2 � (1 + �
0) � (1 + �1) � T

� � (1 + �) � T �, with probability of success

at least 1� �.

Binary Search

Input: D, m

Output: A (1 + �) approximate schedule

Pseudocode [1] L = D
m ; U = D

[2] Loop

[3] T = L+U
2

[4] Run Algorithm ASUM for T.

[5] Is T a feasible makespan value ?

[6] NO: L = T

[7] YES: U = T

[8] Repeat dlog(m
�1
)e times

[9] End

Figure 1: Binary Search

Note 3.2 It is possible to modify algorithm A-SUM so that it approximates directly the optimization

version of SUM and to avoid the binary search procedure. Instead of assuming a feasible makespan

value T the algorithm would simply �lter out pij such that pij > D, since the optimal schedule has

makespan at most D. By using a slightly larger � the algorithm would �nd an (1 + �){approximate

schedule in one execution. However the complexity of the single execution is larger than the overall

complexity of the A-SUM based algorithm.

15

3.3 Approximate enumeration

The cardinality of set � of assignments of "large jobs" to the machines depends exponentially on

1=�4. Hence, even though the size of � is a constant, it is not polynomial on �, since � = �(�4). If

algorithm A-SUM processes each assignment ' 2 � separately then the complexity of the algorithm

is not fully polynomial. It will be shown, that it is possible to consider only �f , a substantially

smaller subset of �, with size polynomial on �. Considering only the assignments in �f will admit

algorithm A-SUM to be fully polynomial, at the cost of introducing an arbitrarily small constant

error factor to the approximation guarantee of the �nal solution. The set �f is obtained from �

by applying T1, a technique of Horowitz and Sahni ([11]) in the way it has been used in [12], and

T2, a geometric grouping technique.
Technique T1. Instead of considering every individual of the possible assignments ' 2 � of the

large jobs to the machines it is possible to de�ne groups of similar assignments and to consider

only one of the assignments in each group. The cost is a constant error factor to the approximation

guarantee of the �nal solution. For every valid assignment ' the load 'i on machine i is : 0 � 'i �
D. The interval [0;D] is partitioned into N = mk

�5
sub-intervals each of size at most D�5

mk . Given two

assignments ' and � of �, if for each machine i, their respective loads 'i and �i on machine i are

in the same sub-interval, then the assignments ' and � are considered to the in the same group.

From all assignments that belong to the same group, the algorithm considers only one arbitrary

of them. Let �1 be a set of the assignments that contains exactly one assignment of each group.

The cardinality of �1 is
�
m log(m=�)

�

�O(m)
. The set �1 can be generated by a simple algorithm with

sequential running time
m�log(m=�)

� ([12, Section 2.1]).

At least one of the assignments ' 2 � will correspond to an optimal schedule. Let '� be

one optimal assignment. Then there will be a corresponding assignment �'� in �1, such that

8 i; �'�
i � '

�
i � (1 + �5). Hence enumerating the assignments in �1 instead of � will improves the

complexity of algorithm A-SUM to fully polynomial at the cost of an extra error ratio of at most

(1 + �5) to the �nal solution.

Technique T2. Technique T2 is a simple geometric grouping technique. The interval [0; D] is

partitioned into the geometrically increasing sub-intervals: [0; �D]; (�D; �(1+ �)D]; (�(1+ �)D; �(1+

�)2D]; : : : ; (�(1 + �)LD;D], where L = d log(1=�6)
log(1+�6)

e. Given two assignments ' and � of �, if for each

machine i, their respective loads 'i and �i on machine i are in the same sub-interval, then the

assignments ' and � are considered to the in the same group. From all assignments that belong to

the same group, the algorithm considers only one arbitrary of them. Technique T2 partitions the
assignments ' 2 � into at most mL groups. Let �2 be the set of all representative assignments of

�1.

Lemma 3.3 For every x 2 [0; 1] : 1
2
x � ln(1 + x).

Proof: Let f(x) = ln(1 + x)� 1
2
x. We want to show that f(x) � 0 for x 2 [0; 1]. Now f(0) = 0

and f
0(x) = 1

1+x �
1
2
. Since f 0(x) � 0 for x 2 [0; 1], f(x) � f(0) = 0 for x 2 [0; 1].

The cardinality of �2 is O(mL) = O(m
log(1=�6)

log(1+�6)) = O(m
2 log(1=�6)

�6). The last equality is due to

Lemma 3.3.

16

In algorithm A-SUM technique T2 is applied on top of technique T1, that is for all assignments
in �1 that belong to the same geometric group of technique T2 only one (arbitrary) of them is in

�f . For each assignment �' 2 �1 the algorithm proceeds to the main iteration only if no other

assignment of the same class for �2 has been processed. The number of iterations of the main part

of the algorithm is now O(min(j�1j; j�2j). The cost is the extra factor (1 + �5) � (1 + �6) in the

approximation guarantee of the �nal solution.

Note 3.3 Due to technique T2 the number of assignments that are processed is polynomial on m.

However T2 depends on T1 since all assignments of �2 are generated from the assignments of �1.

Technique T1 depends exponentially on the number of machines m and it is the only component of

the whole approximation scheme that is not polynomial on m. Hence a way to directly generate the

assignments of �2 would turn A-SUM into a polynomial time algorithm for any numbers n of jobs

and m of machines.

4 Makespan and Cost

The bicriteria problem SUMC generalizes the standard SUM problem, in that processing a job j on

machine i incurs a cost of cij and hence there are two optimization criteria in SUMC, the makespan

and the cost. As in the previous sections, the number of machines m is assumed to be a constant.

We show algorithm A-SUMC, a fully linear time RRDP for SUMC. Given an instance of SUMC

and values T and C, an �{relaxed decision procedure for SUMC returns a schedule of cost at most

(1 + �)C and makespan at most (1 + �)T , or decides that there is no schedule of cost at most C

and makespan at most T . The probability of failure is at most the given constant �.

4.1 Algorithm A-SUMC

The structure of Algorithm A-SUMC is almost identical to that of algorithm A-SUM, with a small

number of straightforward adaptations. The de�nition of the measures dj and D is extended to

cover the bicriteria nature of A-SUMC. A constant number of jobs, the large jobs, are selected.

For each possible assignment of the large jobs, a fractional schedule is calculated with algorithm

PDD. The best fractional solution is rounded randomly to an integer schedule. All unlucky jobs

of the rounded schedule are removed and then assigned, each on the machine where its measure

dj is minimum. The result is a (1 + �){approximate schedule, if the problem is feasible and if the

randomized algorithm did not fail.

Input: An instance of SUMC, the constants � : 0 < � � 1, and � : 0 < � < 1, and the values T for

makespan and C for cost.

Output: With probability of success at least (1��), a schedule of makespan at most (1+ �)T and

cost at most (1 + �)C or the problem is infeasible for makespan T and cost C.

Step 0: Initializations.

Let �1 = �2 = �3 = �4 = �5 = �6 =
�
9
= �(�). 8j; dj = minifpij + cijg, D =

P
j dj ,

� =
3 ln 2m+2

�

(�4)2
, � = e

2 + ln
�
2m+2
�

�
, and k =

l
� � � � (m+ 1) � m+1

�3

m
.

17

Step 1: Normalization. The processing times pij are scaled by �
T and the costs cij by

�
C . Now the

problem is to decide if there is a schedule of makespan and cost bounded by �.

Step 2: Simple Filtering.

8i; j : IF (pij > T OR cij > C) THEN xij = 0

Step 3: Large jobs.

Let J` = f j ; j dj belongs to the k largest djg be the set of large jobs and let � be the set of

all possible assignments of the large jobs to the machines. Let �f be an appropriate subset

of �.

Step 4: Best Fractional Schedule xij.

8 assignment ' 2 �f do

1. Formulate the corresponding scheduling problem as an integer program ILP-SUMC(').

2. Relax ILP-SUMC(') to the linear program LP-SUMC(').

3. Find the approximate fractional schedule with algorithm PDD.

Among all fractional schedules select the one of minimum makespan and cost.

Step 5: Filtered Randomized Rounding.

1. Round the best fractional schedule with XRR.

2. Filter : If a job j has been randomly assigned to a pij > 1 or a cij > 1 THEN job j is

called "unlucky" and it is removed from the schedule.

3. 8 unlucky jobs j, assign job j to machine i = argminifpij + cijg

4.2 Analysis of algorithm A-SUMC

The input to algorithm A-SUMC for SUMC, is an instance of SUMC, the values T for the makespan

and C for the cost, the constant approximation ratio � > 0 and the maximum probability of failure

� : 0 < � < 1.

Normalization. Let � be the marginal mean value:

� =
3 � ln

�
2m+2
�

�
(�4)2

: (34)

By scaling the processing times pij by
�
T
and the costs cij by

�
C
the problem becomes to decide if

there is a schedule of makespan and cost bounded by �.

Simple Filtering. As in Sec. 3, a simple �ltering procedure sets for any pair (i; j) such that

pij > � or cij > � the corresponding xij = 0. Since � is assumed to be a feasible bound for the

problem, the simple �ltering process does not modify its feasibility. Let

� = e
2 + ln

�
2m+ 2

�

�
; (35)

18

p = � � � � (m+ 1) ; and (36)

k =

�
(� � � � (m+ 1)) �

�
m+ 1

�3

��
: (37)

The measure dj for each job j is now de�ned in a way to cover both the processing times pij
and the costs cij. The sum of all dj is de�ned as before to be D.

8 job j; dj = min
i
fpij + cijg and D =

X
j

dj : (38)

Large Jobs. Let the k jobs corresponding to the k largest dj, be the "large jobs", and let J` be

the set of all large jobs:

J` = fj j dj belongs to the k largest djg : (39)

Enumeration. Let � denote the set of all possible assignments t of the large jobs j 2 J` to the

machines. The cardinality of � is mk, a constant. The algorithm can examine separately each of

the assignments ' 2 � in m
O(

(m+1)2 log2(
2m+2

�
)

(�4)
2�3

)
steps.

Approximate Enumeration. As in Sec. 3 the set of assignments considered can be substantially

reduced from � to �f� with techniques of Sec. 3.3. The cost is an extra arbitrarily small error

factor (1 + �5) � (1 + �) to the approximation guarantee for the �nal solution. As in the analysis

of algorithm A-SUM, the rest of the analysis of A-SUMC is done with the assumption that all

possible assignments in � are examined by the algorithm. This assumption is relaxed in the �nal

Equation 48, by introducing the extra factor (1 + �5) � (1 + �6) to the approximation guarantee.

Approximate Fractional Schedule Let '� be an assignment of the large jobs as they appear in

an optimal schedule. Given the assignment '�, the problem of assigning the remaining jobs in an

optimal way (to minimize the maximum of makespan and cost) can be formulated as the following

integer linear program ILP � SUMC('�):

min Z

s:t:

'
�
i +

P
j2[n]�J`

pijxij � Z (i = 1; : : : ;m)

'
�
c +

P
j2[n]�J`;i2[m]) cijxij � ZPm

i=1 xij = 1 (j 2 [n]� J`)

Z � 0; xij 2 f0; 1g (i = 1; : : : ;m; j 2 [n]� J`)

Let �� be the optimal objective value of ILP-SUMC('�). Since the value � is assumed to be a

feasible bound on the makespan:

�
� � � = T = C : (40)

Let LP-SUMC('�) be the linear program relaxation of ILP-SUMC('�) obtained by relaxing the

integrality constraints on the variables xij to 8i; j : xij � 0. The linear program LP-SUMC('�)

has a block-angular structure and it can be approximated with the logarithmic-potential based

PDD algorithm of [6] as LP-SUM(t�) in Sec. 3. Hence for given constant �2, the PDD algorithm

will produce a (1 + �2){approximate fractional schedule. Let xij and �1 be the output produced by

PDD. Then:

19

'
�
i +

P
j2[n]�J`

pijxij � �1 (i = 1; : : : ;m)

'
�
c

P
j2[n]�J`;i2[m]) cijxij � �1Pm

i=1 xij = 1 (j 2 [n]� J`)

Z � 0; xij 2 f0; 1g (i = 1; : : : ;m; j 2 [n]� J`)

By the approximation guarantee of PDD and Equ. 40:

�1 � �
� � (1 + �2) � � � (1 + �2) : (41)

For each assignment ' 2 � the PDD algorithms �nds an approximate fractional solution to

LP-SUMC('). At the end the algorithm selects the among all fractional solutions the one with the

best objective value �2.

�2 = min
'2�

f �' j �' = �2 � approximate solution to LP-SUMC(') found with PDDg : (42)

Hence:

�2 � �1 � � � (1 + �2) : (43)

Rounding. As in Sec. 3 the best fractional solution found is rounded to an approximate schedule,

with Filtered Randomized Rounding (FRR). First the fractional schedule is rounded to an integer

schedule with standard XRR. Let �3 be the maximum of the makespan and the cost of the rounded

schedule.

Let � = e
2 + ln

�
2m+2
�

�
. Let E1 be the event:

E1 = f In the rounded solution �3 > � � �g: : (44)

Proposition 4.1 The probability of event E1 is at most �=2.

Proof: Similar to Proposition 3.1.

For each i, j let the processing time pij be called "bad" if pij > 1 and the cost cij be called "bad" if

cij . In the rounded schedule a job j is called unlucky, if it does not belong to the large jobs J` and

if it has been randomly assigned to a machine i such that pij is bad or cij is bad, that is xij = 1

with pij > 1 or cij > 1. Let Ju be the set of unlucky jobs in the rounded schedule. All the unlucky

jobs are removed from the rounded schedule. The remaining schedule is called the �ltered rounded

schedule. In the �ltered rounded schedule let �4 = maxfmakespan; costg. Let E2 be the event:

E2 = f In the �ltered rounded schedule �4 > (1 + �4) � �2g: (45)

Proposition 4.2 The probability of event E2 is at most �=2.

Proof: Similar to Proposition 3.2.

Lemma 4.1 For any set of at most p jobs that do not belong to J`, the sum of their dj is at most

�3 � �2.

20

Proof: Simple application of Lem. 3.1.

Let E3 be the following event concerning the sum of the dj of all unlucky jobs j 2 Ju:

E3 = f
X
j2Ju

dj > �3 � �2g : (46)

Proposition 4.3 The probability of event E3 is at most �
2
.

Proof: Similar to Prop. 3.3.

Final Schedule. The �nal schedule is obtained from the �ltered schedule, by simply assigning

every unlucky job j 2 Jp to a machine i, where pij = dj. Let �5 be the maximum of the makespan

and the cost of the �nal schedule.

Proposition 4.4 Let E4 be the event: E4 = E2
S
E3. Then:

1. The probability of event E4 is at most �, and

2. IF event NOT(E4) THEN in the �nal schedule �5 is not larger than (1 + �) � T .

Proof: 1. A su�cient bound on the probability of the event E4 = E2
S
E3 that at least one of

E2,E3 is true, is the sum of their individual probabilities:

ProbfE2
[

E3g � ProbfE2g+ ProbfE3g � � : (47)

2. If event E4 is NOT TRUE then both events E2 and E3 are NOT TRUE and then by Prop. 4.2

and 4.3 the value �5 of the �nal schedule is:

(�5 � �4 + �3 � �2) � (1 + �5) � (1 + �6)) �5 � (1 + �) � � : (48)

We have proven that given an instance of SUMC, constants � > 0 and � 2 (0; 1), and values

values T and C for makespan and cost respectively, A-SUMC runs in fully O(n){sequential time

or in O(log n){time on O(n= log n){processors and, with probability at least 1� � either produces

a schedule of makespan at most (1 + �)T and cost (1 + �)C, or decides that there is no schedule of

makespan at most T and cost at most C. Hence:

Theorem 4.1 Algorithm A-SUMC is a O(n){time RRDP for SUMC. The parallel running time

of A-SUMC is O(log n) on a O(n
log n

) processor EREW PRAM.

21

5 Approximation schemes for SUMC

The SUMC problem has two separate objectives, the makespan and the cost, and this fact gives

rise to more than one optimization problems for SUMC. Two natural cases are SUMCoptT and

SUMCoptC, which are obtained by specifying an upper bound on the one objective and then

optimizing the second objective under this condition. In this way, SUMCoptT is the problem

of �nding for a given instance of SUMC and a speci�ed cost value C, the schedule of minimum

makespan for cost at most C. Similarly SUMCoptC is the problem of �nding for given SUMC

and makespan T a schedule of minimum cost C and makespan at most T . A third optimization

problem is SUMCoptTC, which optimizes a linear combination of both criteria, makespan and

cost, for example d � T + C, for d > 0. This problem is discussed in [24] for an unrestricted

number of machines. For a �xed number of machines, Jansen and Porkolab present in [12] a

simple approximation scheme for SUMCoptTC based on a relaxed decision procedure for SUMC.

Algorithm A-SUMC can be used within the algorithm of [12].

In this section, we show how an �{relaxed decision procedure for SUMC can be used to build

approximation schemes for the �-relaxed versions of SUMCoptT and SUMCoptC. Given an instance

of SUMCoptT and the bound on the cost C, the �{relaxed SUMCoptT problem is to �nd a schedule

of cost at most (1+�)C and makespan at most (1+�)T , if T is the optimal makespan of SUMCoptT

if the cost is restricted to be at most C. In the same way, given an instance of SUMCoptC and the

bound on the makespan T, the �{relaxed SUMCoptC problem is to �nd a schedule of makespan at

most (1+ �)T and cost at most (1+ �)C, if C is the optimal cost of SUMCoptC when the makespan

is restricted to be at most T.

Proposition 5.1 For any feasible solution to SUMC, the two objectives of SUMC, makespan and

cost, have values that are always within a linear factor of one of the respective weights in the original

speci�cation of the instance of the problem.

Proof: Let pmax be the maximum processing time that appears in an optimal solution to SUMC.

Then the makespan of the optimal schedule is at least pmax and at most n � pmax. There are at

most m �n di�erent possibilities for pmax, since pmax has to be one of the speci�ed pij. In the same

way let cmax be the maximum cost that appears in an optimal solution to SUMC. Then the cost

of the optimal schedule is at least cmax and at most n � cmax. There are at most m � n di�erent

possibilities for cmax, since cmax has to be one of the speci�ed cij .

De�nition 5.1 We say that a combinatorial optimization problem has the poly{bottleneck3 prop-

erty, if its optimal objective value is always within a polynomial factor of one of its input elements

(weights). Unweighted problems are assumed to have elements of weight 1.

Fact 5.1 SUMC has the poly{bottleneck property.

3The term "bottleneck" has been used by Hochbaum and Schmoys in [8] for a class of graph optimization problems.

An important property of the bottleneck problems of [8], is that the value of the optimal solution is always one of

the (edge) weights in the original speci�cation of the instance of the problem.

22

The following Lemma uses algorithm A-SUMC and the poly{bottleneck property of SUMCoptT

to build an approximation algorithm for it (SUMCoptT). In the same way an approximation

algorithm for SUMCoptC can be build. Furthermore the technique can be generalized to any

problem that has the poly{bottleneck property, if a (relaxed) decision procedure is given for the

problem.

Lemma 5.1 Let P be an instance of the SUMCoptT problem for given cost C, approximation ratio

� > 0 and probability �. Let N be the size of the problem. There is a simple two-level binary search

procedure that solves the optimization version of P in O(logN) steps. The binary search procedure

calls algorithm A-SUMC once at each step.

Proof: The following 2-level binary search procedure achieves the result claimed in the Lemma.

Step 1: Weights. Let W be the set of numbers that contains for each pair (i; j), the values pij
and n � pij . The cardinality of W is w = jW j � 2 �m � n.

Step 2: Sorting. Sort the elements of W . Let the sorted list be w1 � w2 � : : : � ww.

Step 3: Indexed binary search.

1. LET l = 1; u = w

2. x = l+u
2

3. IF SUMC is feasible for cost C and makespan wx

4. THEN u = x ELSE l = x;

5. Repeat from step 2 for at most dlog2(2mn)e times.

The output x is such that : wx � T
�
< wx+1.

Step 4: Standard binary search.

1. LETL = wx; U = wx+1

2. T = L+U
2

3. IF SUMC is feasible for cost C and makespan wx

4. THEN U = T ELSE L = T ;

5. Repeat from step 2 for at most dlog2(mn=�)e times.

The sorting procedure of step 2 needs O(n log n) time. The binary search of steps 3 and 4 executes

O(log(n=�)) loops. The main cost of each loop is the execution of algorithm SUMC. Given that

the probability of failure of the whole procedure is bounded by �, each individual execution of

SUMC is done with probability of failure at most �
dlog2(2mn)e+dlog2(mn=�)e

. Under this condition the

complexity of SUMC is O(n log logn). Hence the complexity of the overall approximation scheme

for SUMCoptC is O(n logn log logn). The asymptotic performance of the algorithm can be slightly

improved to O(n log n) by using the deterministic RDP for SUMC of [12] instead of algorithm

A-SUMC.

23

References

[1] A.K. Amoura, E. Bampis, C. Kenyon, and Y. Manoussakis. Scheduling independent multipro-

cessor tasks. In 5th Annual European Symposium on Algorithms, pages 1{12, 1997.

[2] D. Culler, R. Karp, D. Patterson, A. Sahay, K. E. Schauser, E. Santos, R. Subramonian,

and T. von Eicken. Logp: Towards a realistic model of parallel computation. In 4th ACM

SIGPLAN Symposium on Principles and Practice of Parallel Programming, May 1993.

[3] J. Diaz, M. Serna, P. Spirakis, and J. Toran. Paradigms for Fast Parallel Approximability.

Cambridge University Press, 1997.

[4] P.S. Efraimidis and P.G. Spirakis. Very fast, sequential and parallel, approximations to hard

combinatorial optimization problems. Technical Report TR99.06.01, Computer Technology

Institute, June 1999.

(http://students.ceid.upatras.gr/�efraimid/index.html).

[5] M. Grigoriadis and L. Khanchiyan. Fast approximation schemes for convex programs with

many blocks and coupling constraints. SIAM J. Optimization, 4(1):86{107, 1994.

[6] M. Grigoriadis and L. Khanchiyan. Coordination complexity of parallel price-directive decom-

position. Mathematics of Operations Research, pages 317{327, 1996.

[7] M. Habib, C. McDiarmid, J. Ramirez-Alfonsin, and B. Reed, editors. Probabilistic Methods

for Algorithmic Discrete Mathematics. Springer, 1998.

[8] D. Hochbaum and D. B. Shmoys. A uni�ed approach to approximation algorithms for bottle-

neck problems. Journal of the ACM, 3(33):533{550, July 1986.

[9] D. Hochbaum and D. B. Shmoys. Using dual approximation algorithms for scheduling prob-

lems: Theoretical and practical results. Journal of the ACM, 3(1):144{162, January 1987.

[10] D.S. Hochbaum, editor. Approximation Algorithms for NP-hard Problems. PWS Publishing

Company, 1997.

[11] E. Horowitz and S. Sahni. Exact and approximate algorithms for scheduling nonidentical

processors. Journal of the ACM, 23:317{327, 1976.

[12] K. Jansen and L. Porkolab. Improved approximation schemes for scheduling unrelated parallel

machines. In ACM Symposium on Theory of Computing, pages 408{417, 1999.

[13] H. Karlo�. Linear Programming. Birkh�auser, 1991.

[14] Y. Kopidakis, D. Fayard, and V. Zissimopoulos. Linear time approximation schemes for parallel

processor scheduling. In 8th IEEE Symposium on Parallel and Distributed Processing, pages

482{485, 1996.

A

[15] J.K. Lenstra, D.B. Shmoys, and �E. Tardos. Approximation algorithms for scheduling unrelated

parallel machines. Mathematical Programming, 46:259{271, 1990.

[16] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University Press, 1995.

[17] S. Plotkin, D. Shmoys, and �E. Tardos. Fast approximation algorithms for fractional packing

and covering problems. Mathematics of Operations Research, 20:257{301, 1995.

[18] P.S.Efraimidis and P.G.Spirakis. Fast parallel approximations to extended positive linear

programs applied to a new variation of matching. Technical Report TR99.01.01, Computer

Technology Institute, January 1999.

[19] P. Raghavan. Randomized Rounding and Discrete Ham-Sandwich Theorems: Provably Good

Algorithms for Routing and Packing Problems. PhD thesis, Computer Science Division, UC

Berkeley, 1986.

[20] P. Raghavan. Probabilistic construction of deterministic algorithms: Approximating packing

integer programs. Journal of Computer and System Sciences, 37:130{143, 1988.

[21] P. Raghavan and C.D. Thompson. Randomized rounding: A technique for provably good

algorithms and algorithmic proofs. Combinatorica, 7:365{374, 1987.

[22] A. Schrijver, editor. Theory of Linear and Integer Programming. John Wiley & Sons, 1986.

[23] M. Serna and F. Xhafa. Approximating scheduling problems in parallel. In EuroPAR 97, 1997.

[24] D. Shmoys and �E. Tardos. An approximation algorithm for the generalized assignment prob-

lem. Mathematical Programming, A62:461{474, 1993.

[25] L.G. Valiant. A bridging model for parallel computation. Communications of the ACM,

33(8):103{111, August 1990.

APPENDIX

A Proof of Theorem 2.1

This section shows the proof of Theorem 2.1 for Cherno�-like bounds.

B

Theorem A.1 (Theorem 2.1). Let � � 0 be a positive real number and let �1; �2; : : : ; �r be reals in

(0,1]. Let X1; X2; : : : ;Xr be independent Bernulli trials with E[Xj] = pj. Let 	 = �+
Pr

j=1 ajXj.

Then E[] = �+
Pr

j=1 ajpj = S. Let � > 0, and T � S = E[] > 0. Then

Prob[> (1 + �)T] < e

�
�

(�)2T

2(1+ �

3
)

�
and for � < 1 : e

�
�

(�)2T

2(1+ �

3
)

�
� e

�
�

(�)2T

3

�
: (49)

Theorem 2.1 is a simple generalization of the following Theorem of Raghavan and Spencer

on Cherno�-like bounds on the tail of the distribution of the Weighted Sum of Bernulli Trials

([20], [19]).

Theorem A.2 ([20, Theorem 1]). Let �1; �2; : : : ; �r be real numbers in (0,1]. Let X1;X2; : : : ;Xr

be independent Bernulli trials with E[Xj] = pj. Let 	 =
Pr

j=1 ajXj. Then E[] =
Pr

j=1 ajpj = S.

Let � > 0, and S = E[] > 0. Then

Prob[> (1 + �)S] <

"
e
(�)

(1 + �)(1+�)

#S
: (50)

The following technical Lemma will used to replace the right hand side of Equ. 50 with an easier

to handle expression.

Lemma A.1 ([7, Page 200, Lemma 2.4]). For all x � 0,

(1 + x) ln(1 + x)� � 3x2=(6 + 2x) : (51)

Proof: Let f1(x) = (6 + 8x+ 2x2) ln(1 + x)� 6x� 5x2. We want to show that f1(x) � 0 for all

x] � 0. Now f1(0) = 0, and f 01(x) = 4f2(x) where f2(x) = (2+x) ln(1+x)� 2x. It su�ces to show

that f2(x) � 0 for all x � 0. Now f2(0) = 0, and f 02(x) = (1+x)�1+ ln(1+x)� 1. Now f
00
2 (0) = 0,

so it su�ces to show that f 002 (0) � 0 for all x � 0. But f 002 (x) = x(1+x)�2 � 0, and so we are done.

The following Lemma is obtained from Lemma A.1 and Theorem A.2:

Lemma A.2 For � > 0 and S � 0

"
e
(
�)

(1 + �)(1+�)

#S
� e

�
�

(�)2S

2(1+ �

3
)

�
; and for � < 1 : e

�
�

(�)2S

2(1+ �

3
)

�
� e

�
�

(�)2S

3

�
: (52)

Proof: Let B(S; �) = e

�
�

(�)2S

2(1+ �

3
)

�
. Let � � 0 be a positive real number and let �1; �2; : : : ; �r

be reals in (0,1]. Let X1;X2; : : : ;Xr be independent Bernulli trials with E[Xj] = pj . Let 	 =

�+
Pr

j=1 ajXj . Then E[] = �+
Pr

j=1 ajpj = S. Let � > 0, and T � S = E[] > 0.

C

Let 	0 =
Pr

j=1 ajpj and E[0] =
Pr

j=1 ajpj = S
0. Then

Probf	 > (1 + �)Tg = Probf�+	0
> (1 + �)Tg =

Probf	0
> (1 + �)T � �g � Probf	0

> T � �+ T � �g =

Probf	0
> S

0(1 +
T � �� S

0

S0
+

T

S0
� �)g < B(S0

;
T���S0

S0
+ T

S0
� �) :

The last step is to show that

B(S0
;
T � �� S

0

S0
+

T

S0
� �) � �) � B(T; �) ; (53)

which can be done be using the de�nition of B(S; �) and the fact that S0 + � = S � T .

B Approximating the Linear Programs with PDD

The linear programs that occur in algorithms A-SUM�, A-SUM and A-SUMC respectively, have

the block-angular structure of the following linear program L.

Linear Program L
min �

s:t: Pn
j=1 pijxij � � (i = 1; : : : ;m)Pm
i=1 xij = 1 (j = 1; : : : ; n)

Z � 0; xij � 0 (i = 1; : : : ;m; j = 1; : : : ; n)

An important property of L is that the problem variables are grouped into n independent m-

dimensional simplices (blocks) and that it has a constant number of positive packing constraints that

can be considered as the coupling constraints. The objective is to compute a block-feasible solution

that uses a scalar multiple of the given m vector of resources. Since L is a linear program it can be

optimally solved with any of the known polynomial time algorithms for linear programming ([13],

[22]). If however, an (1+�){approximate solution is good enough for the application (and this is the

case for the applications of this work), then there are very fast algorithms for linear programs like

L ([5],[17],[6]). The most e�cient for the needs of this work is the logarithmic-potential based PDD

algorithm of Grigoriadis and Khanchiyan, which approximates the LP relaxation of the problem

within (1 + �1) in O(n) time. Furthermore it admits a simple optimal work parallelization of

O(log n){running time.

Claim B.1 (Claim 2.1). The linear program LP-SUM� can be approximated within any constant

ratio � in (O(n)){sequential time and in O(log n){time on a O(n= log n){processor EREW PRAM.

Proof: According to Theorem 3 of [6], the PDD algorithm will �nd a (1+�1)-approximate solution

for LP-SUMb in O(m(��2
1 ln ��1

1 +lnm)) iterations. Each iteration requires O(m ln ln(m=�1)) oper-

ations, or O(lnm ln ln(m=�1)) operations in parallel on a m= lnm - processor EREW PRAM. Each

D

iteration also requires n parallel unrestricted block optimizations performed to a relative accuracy

of O(�1). At each iteration the algorithm calculates m sums of n numbers for estimating the current

load on each coupling constraint. The addition can be done in O(mn) time on 1 processor or in

O(m log n) time on O(n
log n

) processors. For the block problems in LP, there are simple block solvers

that �nd in O(m) time the optimal solution to the block problem, even though a �1-approximate

solution would be su�cient. Hence the algorithm runs in O(log n) time on O(n= log n) processors

and produces a (1 + �2) approximate solution to LP-SUM�.

C De�nitions and notation

This Section summarizes the terminology and the notation used in the paper.

C.1 De�nitions

De�nition C.1 Polynomial Time Approximation Scheme - PTAS: An algorithm that accepts as

input a problem instance and a constant � > 0, runs in time polynomial on the instance size N, and

produces as output a (1 + �){approximate solution.

De�nition C.2 Fully Polynomial Time Approximation Scheme - FPTAS: A PTAS whose running

time is polynomial on both the instance size and the constant � > 0.

De�nition C.3 Randomized PTAS - RPTAS: A randomized algorithm that accepts as input a

problem instance and a constant � > 0, runs in time polynomial on the size N of the instance, and

produces as output a (1 + �){approximate solution with probability p >
1
2
.

De�nition C.4 randomized FPTAS (RFPTAS). A RPTAS whose running time is polynomial on

both the instance size and the constant � > 0.

De�nition C.5 (Relaxed Decision Procedure - RDP). A RDP is an algorithm that given a min-

imization problem and and a value d, an �-relaxed decision procedure

� either decides that there is no solution of objective value at most d.

� or returns a solution of objective value at most (1 + �)d

De�nition C.6 (Randomized Relaxed Decision Procedure - RRDP). A (RRDP), is a randomized

algorithm that given a minimization problem and and a value d, with probability of success at least

p >
1
2
,

� either decides that there is no solution of objective value at most d,

� or returns a solution of objective value at most (1 + �)d.

De�nition C.7 The poly-bottleneck property. We say that a combinatorial optimization problem

has the poly{bottleneck property, if its optimal objective value is always within a polynomial factor

of one of its input elements (weights). Unweighted problems are assumed to have elements of weight

1.

E

C.2 Problem De�nitions

De�nition C.8 Problem SUM: There are n independent jobs and m unrelated parallel machines.

Each job j is to be assigned to one of the machines and at any time, a machine can process at most

one job. The processing time of job j on machine i is pij. The objective is to �nd a schedule that

minimizes makespan.

De�nition C.9 Problem SUM�: The restriction of SUM where there is a constant �, such that

for every instance of SUMC:
maxi;j pij

mini;j pij
� � : (54)

De�nition C.10 Problem SUMC: There are n independent jobs and m unrelated parallel ma-

chines. Each job j is to be assigned to one of the machines and at any time, a machine can process

at most one job. The processing time of job j on machine i is pij. Assigning job j to machine i

incurs a cost cij. SUMC is a decision problem and the objective is to �nd a schedule with bounded

makespan and cost.

De�nition C.11 Problem SUMCoptT: This problem, which is also known as the generalized as-

signment problem, is an optimization version of SUMC. For a given makespan value T , the objective

is to �nd a schedule of minimum cost C and makespan at most T .

De�nition C.12 Problem SUMCoptC: The symmetric problem of SUMCoptT. Given an instance

of SUMC and a value C for the cost, the objective is to �nd a schedule of minimum makespan and

cost at most C.

De�nition C.13 Problem SUMCoptTC: An optimization problem of SUMC where the objective

is to optimize a linear function of the makespan and the cost of the schedule.

F

Latin Letter Notation

A-SUM� algorithm A-SUM� for SUM�

A-SUM algorithm A-SUM for SUM

A-SUMC algorithm A-SUMC for SUMC

BSP The Bulk Synchronous Parallel computing model.

EREWPRAM Exclusive Read Exclusive Write PRAM

FRR The �ltered randomized rounding procedure

ILP integer linear program or integer linear programming

ILP-SUM integer program formulation of LP-SUM

ILP-SUMC integer program formulation of LP-SUMC

LP linear program or linear programming

LP-SUM LP relaxation of the integer program formulation of LP-SUM

LP-SUM� LP relaxation of the

integer program formulation of LP-SUM�

LP-SUMC LP relaxation of the integer program formulation of LP-SUMC

LogP The LogP model for parallel computation

n0 The threshold value for the number of jobs

in algorithm SUM�

OPT The optimal value of the scheduling problem

PDD The logarithmic-potential based algorithm

for linear programs in block-angular form

PRAM The Parallel Random Access Machine

Prob probability of an event

T Makespan of a schedule

T1 Minimum makespan that satis�es relaxed feasibility

T2 Relaxed feasible makespan found by binary search procedure of Fig. 1.

T
� Makespan of optimal schedule

T1 Technique to reduce � to �1.

T2 Geometric grouping technique to reduce � to �2.

XRR The standard exclusive randomized rounding technique.

G

Greek Letter Notation

� : Overall approximation ratio

�1 : Error Ratio for binary search

�2 : Error Ratio for PDD algorithm

�3 : Error Ratio for unlucky jobs

�4 : Error Ratio for randomized rounding

�5 : Error Ratio for technique T1
�6 : Error Ratio for technique T2
� : Marginal mean value for fractional packing

constraints

� : Deviation of the non-�ltered rounded schedule

� : Upper bound on the probability of failure of

the randomized algorithms

� : Represents objective of fractional schedules

�
� : Objective value of optimal fractional schedules

�1 : Fractional schedule for optimal assignment of large jobs

�2 : Objective value of best fractional schedule found

�3 : Objective value of rounded schedule

�4 : Objective value of �ltered rounded schedule

�5 : Objective value of �nal schedule

� : The set of all possible assignments of the

large jobs to the machines

�1 : A subset of � of fully polynomial cardinality

�2 : A subset of � of size polynomial on m

�f : The intersection of sets �1 and �2.

The set �f contains the assignments for the

algorithm is executed. However all assignments

of �1 have to be considered.

' : An assignment in �.

'i : The load on machine i due to '.

�' : An assignment in �1.

� : An assignment in �.

�i : The load on machine i due to �.

H

