

Data Privacy

- Given a dataset with sensitive information, such as:
 - Census data
 - Health records
 - Social network activity
 - Telecommunications data
 - Financial records

- Health diagnostics
- Intrusion detection
- Computing financial risk
- Combating misinformation

- How can we:
 - enable desirable uses of the data
 - while protecting the privacy of the data subjects?

Privacy Risk: Querying ChatBots Can Leak Personal Information

6 Things You Should Never Share with ChatGPT

ChatGPT is a great tool, but you shouldn't trust it with your sensitive and private data.

Bing's Issues Aren't Funny, They're Dangerous—And May Spawn Bad Regulation

ChatGPT is a data privacy nightmare. If you've ever posted online, you ought to be concerned

Published: February 7, 2023 8:06pm EST Updated: February 9, 2023 11:30pm EST

Privacy Risk:
Training Data
Leakage from
Stable
Diffusion
(Vision) Model

Training Set

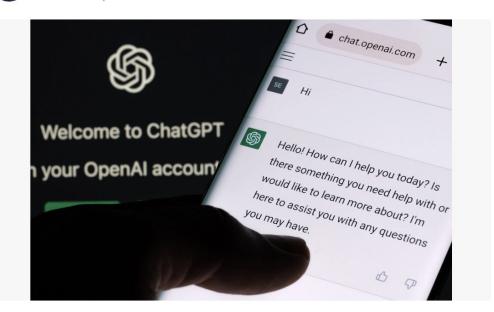
Caption: Living in the light with Ann Graham Lotz

Generated Image

Prompt: Ann Graham Lotz

Privacy Risk: Training Data Leakage from Large Language Model (LLM)

Regurgitate large amounts of training data



SOURCE: ASCANNIO VIA SHUTTERSTOCK

Jai Vijayan, Contributing Writer

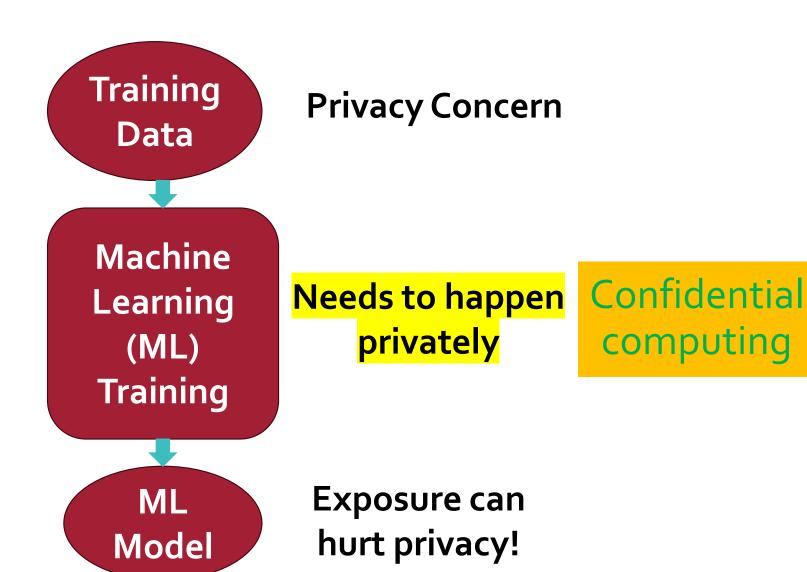
December 1, 2023

in f X 🗷 🖼

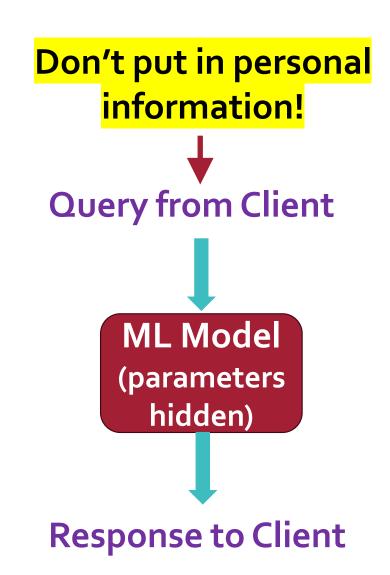
Can getting ChatGPT to repeat the same word over and over again cause it to regulgitate large amounts of its training data, including personally identifiable information and other data scraped from the Web?

https://www.darkreading.com/cyber-risk/researchers-simple-technique-extract-chatgpt-training-data

Aspects to Privacy



Aspects to Privacy

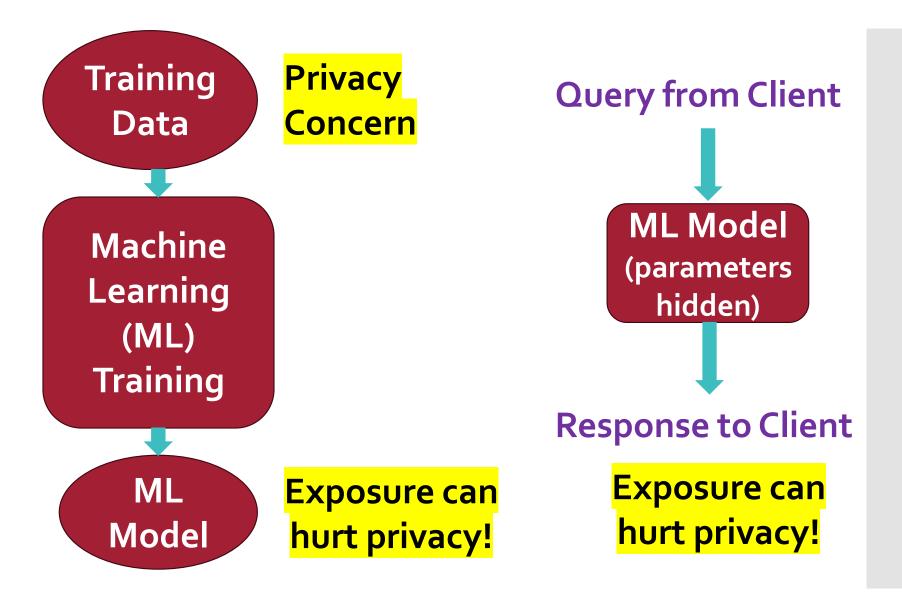


Private Inference

Private Inference

- Use Fully Homomorphic Encryption (FHE) to train model on encrypted training data to produce an encrypted model
- Main challenge: Multiple orders of magnitude slowdown
- Approach: Hardware acceleration of FHE

Aspects to Privacy



Information

leakage

Automatically privatize any algorithm without looking inside of it.

- - Responses to inference queries from neural network learned from samples X

An adversary cannot recover our secret given the leakage

An adversary cannot recover our secret given the leakage

Worst-case guarantee against arbitrary adversary strategy

An adversary cannot recover our secret given the leakage

Upper bounds of success rate or probability (security parameter)

An adversary cannot recover our secret given the leakage

Successful statistical inference by returning a satisfied estimation

An adversary cannot recover our secret given the leakage

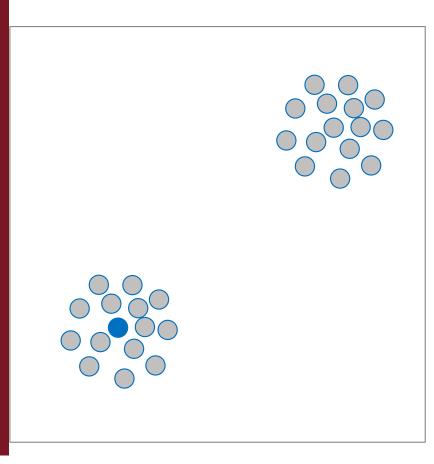
Output of a <u>black-box</u> processing mechanism

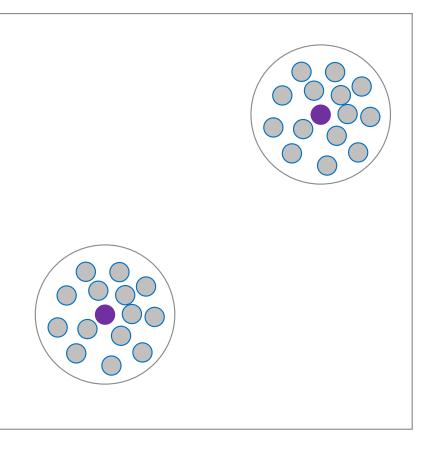
Differential Privacy

- A. Independent of prior knowledge (data entropy)
- B. The privacy/security proof is hard to generate (could be NP-hard)
- C. Utility-privacy tradeoff can be loose, requiring large noise

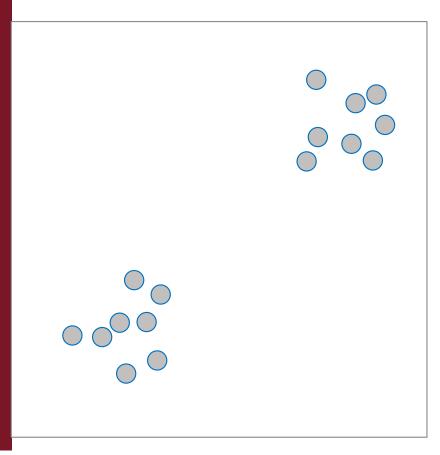
PAC Privacy

- A. Still worst-case (against arbitrary adversarial strategy) but exploits and depends on data entropy obtained from assumed distribution
- B. Automatic PAC Privacy proof and privatization scheme
- C. Tight utility-privacy tradeoff: only adding necessary noise

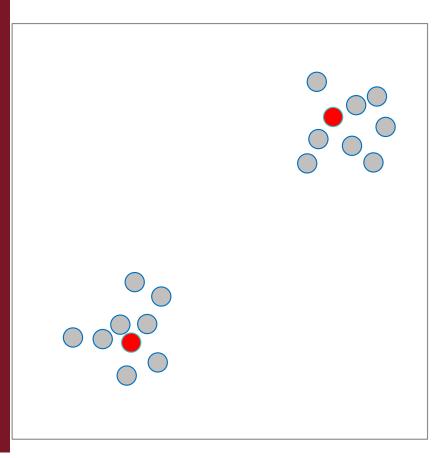




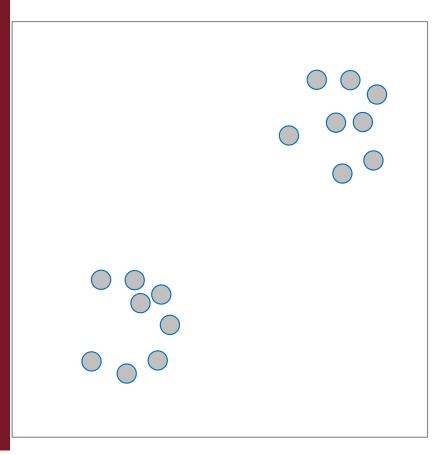
- Non-private 2means clustering produces purple centroids that define 2 clusters
- Want to release centroids with guarantees that data points cannot be reconstructed



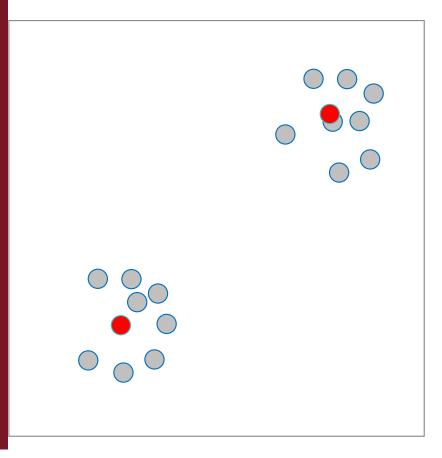
 Select half the points randomly in a trial



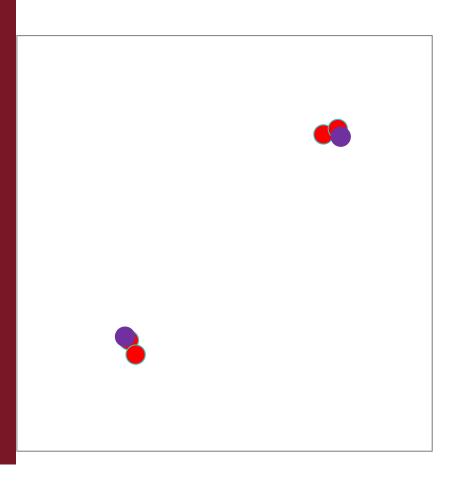
- Select half the points randomly in a trial
- Run K-means algorithm on only the selected points to produce centroids



 Select a different half the points randomly in a different trial



- Select a different half the points randomly in a different trial
- Run K-means algorithm on only the selected points to produce centroids

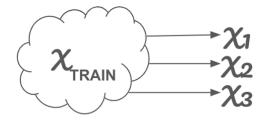


- Since the two clusters are far apart, we will get close to the same centroids for each trial, which are also close to the non-private "ground truth" centroids
- Release either red centroid pair after adding small noise; this will ensure high PAC Privacy for all data points

Privatizing Black-box Algorithms

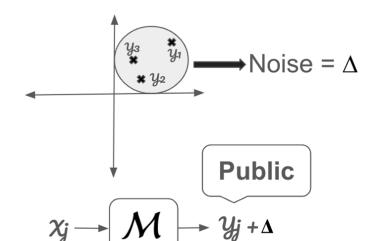
An automatic privatization template

Step 1: Subsample



Step 2: Measure stability

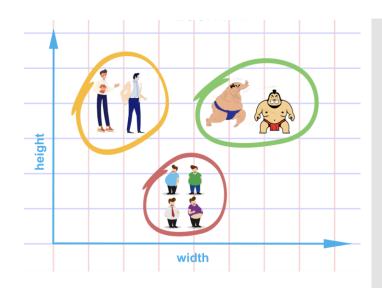
Step 3: Estimate noise

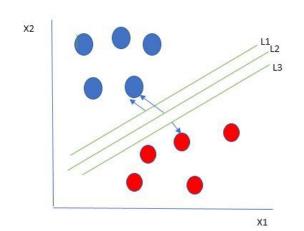


Step 4: Noised release

Lots of Ongoing Work

- Privatized many classic algorithms
 - Support Vector Machines (SVM)
 - + K-Means
 - Principal Component Analysis
 - + Random Forest
- The more stable the algorithm, the easier it is to privatize
- Current: Privatize Deep Learning, Private Database analytics





Long-term Goals

- Allow deep learning model that detects disease to be deployed guaranteeing privacy of patients whose data was used to train the model
- Large Language Model (LLM) responses to queries guarantee privacy of training data
- And more ...

