
Challenges On Software Evolution
Trust as the new software currency

October 2025

Dr. Yiannis Kanellopoulos
Founder & CEO
yiannis@code4thought.eu

mailto:yiannis@code4thought.eu

Overview

01 - About code4thought
02 – Our convictions about Software and AI
03 – On Software Evolution and The need for Testing
04 – On AI-Leveraged Software Engineering
05 – Closing Remarks

About code4thought
Origins
Founded in 2017 with a unique
purpose, to render technology
transparent, for large-scale software
and AI-based systems.

Trustworthy AI
We help organizations govern any type
of AI-based system at every stage of
their life cycle, by testing & auditing AI
models & their datasets with iQ4AI, our
own platform

Software Quality
We evaluate and monitor the non-
functional quality of any software
system at every stage of their life
cycle, through the analysis of source
code and architecture with the SIGRID
platform of our partner SIG

Location
Delivery center in Athens
R&D center in Patras

Powered by
_decisively investing in own R&D
_international partnerships & project-participation
_strong ties with Academia
_TIER1 customer base
_team with academic & enterprise experience
_participations and publications in international
venues
_cross domain & technology agnostic solutions
_factual and well-researched approach

Ⓡ

As such: We are able to test any kind of software *

Code –
Driven
System

Code –
Driven

Systems

Data – Driven
System

Code –
Driven

Systems

* Image generated using DALL-E

Ⓡ

“So, I think what we
should be doing,
let's not even
argue about what
AI is, let's just talk
about how do you
govern the
manufacturing of
software.”

Joanna Bryson

When it comes to AI: Our frame of mind

“Data is socially
constructed”

Meredith
Broussard

“Organizations, who design
systems, are constrained
to produce designs which
are copies of the
communication structures
of these organizations.”

Conway’s Law

Ⓡ

• Good software performs its functions unnoticed*.
• 90% of a software engineer’s time is spent in

understanding the code they need to
maintain/change,

• In a software system’s lifecycle, 20% is spent for
its initial development and 80% for its
support/maintenance.

Our convictions about Software

“How Does Your Software
Measure Up? Mastering the DNA
of our information society”
inaugural lecture by Prof. dr. ir.
Joost Visser

Ⓡ

On Software Evolution or Software as the invisible code of
digital life

How it’s going

How it started

Ⓡ

Different Types of Software

Deterministic – Code Driven

Probabilistic – Data Driven

Non Deterministic - Generative

The (Industry) evolution of Requirements

“to just work”,
Y2K Bug

80s-2000s 2000s-2020s

Software/Code
Quality, CI/CD,

Testing
Automation,

DevOps,
Cybersecurity

2020s-…

Privacy, Security
by Design, Secure
Coding, Shift Left,

Responsible
AI/Trustworthy AI

All of the
above … and
some more+ + +

Ⓡ

Source code
remains

important

Testing an AI system: What is different* ?

(Way) More data
affecting critical
decisions

Non
deterministic
behavior

* Compared to a typical software system?

Ⓡ

The Toolkit

From the “How F.A.T. (or F.Acc.T) is your ML Model? Quality in the
era of Software 2.0” talk in 2020 Toronto Machine Learning
Summit

Currently5 years ago

Ⓡ

NLP

• Automate
documentation

• Enhance Code
Readability

• Improve Team
Communication

AI leveraged Software Engineering: How To

LLM-driven Soft
Programming

• Train programs with
examples rather
than instructions

• Learning from
existing code to
generate new
solutions

• Speed-up the
creation of unit-
tests

Hard
Programming

• Traditional
programming
languages will
keep developing

• Focus on code
control,
performance
optimizations
and security

LLMs, ChatGPT and Evolution of Software Engineering: Patterns,
Anti-Patterns, and Quality Imperative, Apr 16, 2023 • by Željko
Obrenović, https://underhood.blog

Ⓡ

Software Developers
employ Productivity
Gains

• Increase efficiency
and innovation

• Facilitating complex
problem solving

• Dealing with tedious
tasks

• Creating better and
up-to-date software
documentation

What we experience

Need to mitigate new
types of Risks

• Antipatterns

• Generate technical
debt at scale

• Trustworthiness/Et
hical/IP & Privacy
concerns

Focus on Quality

• Thoughtful design
decisions

• More time for
reviewing,
improving and
testing code

• Code Reviews as a
means to follow
the human-in-the
loop principle.

Ⓡ

The next decade will not be
about choosing between
traditional software and AI
systems but about
ensuring they evolve
together responsibly. As
leaders, we need to make
trust, explainability, and
governance non-
negotiable parts of this
journey.

Closing Remarks

From testing code to
testing AI, progress
comes when academia’s
curiosity meets industry’s
pragmatism — building
systems that are not only
powerful, but also
responsible.

Thank you

